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Section 1 contains the derivations for all the expressions for the Fisher information presented in the
main text. Section 2 provides a detailed summary of the tools necessary to find the best rank-one
approximation of higher-order tensors such as the higher-order singular value decomposition and
the alternating least squares algorithm. Section 3 shows how to optimize the Fisher information
when the output projection modes can be changed. Section 4 gives details about the experimental
implementation for measuring the transmission matrix of the fiber and the related tensors. Section
5 provides details about the characterization of noise in the setup and the estimation of small de-
formations. Section 6 studies how the dependence of the Fisher information for various channels
changes when the deformation is performed at another location.

1 Derivations for the Fisher information expressions

1.1 Fisher information for intensity measurements

Given a random process determined by a probability mass function 𝑃(𝝌 |𝜁) for the set of random variables
𝝌 and with parametric dependence on 𝜁 , the Fisher information for the parameter 𝜁 is defined as

J (𝜁) =
[
𝜕𝜁 ln 𝑃(𝝌 |𝜁)

]2
, (S1)

where the overline denotes the expected values over all the possible values of 𝝌 [1, 2]. Here, 𝑃(𝝌 |𝜁)
represents the inaccuracy of the measured intensity distribution over the 𝑁 output modes {y1, . . . , y𝑁 }
due to the presence of noise. Thus, the measured intensity distribution is given by 𝝌 = I +𝔀 where
I = |e(out) |2 is the expected intensity distribution and 𝔀 represents the noise which is assumed to be
Gaussian with known standard deviation 𝜎𝑖 for the 𝑖th output mode. The probability mass function can
then be written as

𝑃(𝝌 |𝜁) =
𝑁∏
𝑖=1

1
𝜎𝑖

√
2𝜋

𝑒
− (𝜒𝑖−𝐼𝑖 )

2

2𝜎2
𝑖 , (S2)

The intensity value of the nth output mode is defined as 𝐼𝑛 = |𝑒 (out)
𝑛 |2 where 𝑒

(out)
𝑛 is the coefficient of

the nth output mode in the linear expansion e(out) =
∑

𝑛 𝑒
(out)
𝑛 y𝑛. The Fisher information then takes the

following simple form

J (𝜁) =
𝑁∑︁
𝑖=1

1
𝜎2
𝑖

[
𝜕𝜁 𝐼𝑖

]2
. (S3)
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1.2 Fisher information as a rank-one approximation

Writing the output field in terms of the matrix H and the input field, which is decomposed in terms of the
input modes {x1, . . . , x𝑀 }, e(in) =

∑
𝑗=1 𝑒

(in)
𝑗

x 𝑗 , and normalized, | |e(in) | | = 1, we get that

J (𝜁) = 1
𝜎2

𝑁∑︁
𝑖=1


𝑀∑︁

𝑗 ,𝑘=1
𝜕𝜁 (H𝑖 𝑗H∗𝑖𝑘)𝑒

(in)
𝑗

𝑒
(in)
𝑘
∗


2

(S4a)

=
1
𝜎2

𝑁∑︁
𝑖=1


𝑀∑︁

𝑗 ,𝑘=1
W (3)∗

𝑖 𝑗𝑘
𝑒
(in)
𝑗

𝑒
(in)
𝑘
∗


2

, (S4b)

whereW (3)
𝑖 𝑗𝑘

= H∗𝑖 𝑗H𝑖𝑘 is a third-order tensor encoding the nonlinear relationship between the input field
and the changes in intensity induces by first-order variations of the parameter 𝜁 . For simplicity, we have
taken the noise over the output modes to be the same, 𝜎 = 𝜎𝑖 for all 𝑖, but, if needed, these output mode-
dependent noise variations can be incorporated in the definition of W (3) . It is possible to keep rewriting
this expression for the Fisher information to get a more insightful expression,

J (𝜁) = 1
𝜎2

𝑁∑︁
𝑖=1


𝑀∑︁

𝑗′ ,𝑘′=1
W (3)∗

𝑖 𝑗′𝑘′𝑒
(in)
𝑗′ 𝑒

(in)
𝑘′
∗



𝑀∑︁
𝑗 ,𝑘=1
W (3)∗

𝑖 𝑗𝑘
𝑒
(in)
𝑗

𝑒
(in)
𝑘
∗
 , (S5a)

=
1
𝜎2

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗 ,𝑘=1
W (3)∗

𝑖 𝑗𝑘
𝑎𝑖𝑒
(in)
𝑗

𝑒
(in)
𝑘
∗, (S5b)

where we introduced the real vector a defined component-wise as

𝑎𝑖 =
1
𝜎

𝑀∑︁
𝑗 ,𝑘=1
W (3)

𝑖 𝑗𝑘
∗𝑒 (in)

𝑗
𝑒
(in)
𝑘
∗. (S6)

This real vector a is proportional to the rate of change of the intensity distribution over the output modes
with respect to the parameter 𝜁 for the input field e(in) . Its value is fixed as the one that maximizes J for a
fixed e(in) . It is easy to show that the ∥a∥ = J 1/2 (𝜁) so that substituting a by ã = a/∥a∥ in the expression
for the Fisher information we get,

J (𝜁) =J
1/2 (𝜁)
𝜎

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗 ,𝑘=1
W (3)∗

𝑖 𝑗𝑘
𝑎̃𝑖𝑒
(in)
𝑗

𝑒
(in)
𝑘
∗ (S7a)

J 1/2 (𝜁)
𝜎

〈
W
(3) , ã ⊗ e(in) ⊗ e(in) ∗

〉
, (S7b)

Here, ⟨. . . , . . .⟩ denotes the inner product of two tensors as defined in Eq. (S19). Finally, by squaring both
sides of Eq. S7b, the Fisher information can be rewritten as

J (𝜁) = 1
𝜎2

〈
W
(3) , ã ⊗ e(in) ⊗ e(in) ∗

〉2
. (S8)

Given that ∥ã∥ = | |e(in) | | = 1, this expression can almost be seen as a rank-one approximation of the
third-order tensor W (3) [3]. The difference lies on the fact that ã depends on the input field e(in) and the
tensor we are trying to approximate W

(3) .
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Let us instead consider the cost function

C =

〈
W
(3) , u ⊗ v ⊗ v∗

〉2
, (S9)

where ∥u∥ = ∥v∥ = 1, and u is independent of v. This cost function has more degrees of freedom than J ,
and is easy to show that C = 𝜎2J if

𝑢𝑛 =

∑
𝑚𝑚′W

(3)
𝑛𝑚𝑚′

∗𝑣𝑚𝑣∗𝑚′∑
𝑛

(∑
𝑚𝑚′W

(3)
𝑛𝑚𝑚′

∗𝑣𝑚𝑣∗𝑚′
)2 , (S10)

for e(in) = v. Now, if we find u and v such that C is a maximum then it is easy to verify that u is related
to v according to Eq. (S10) and

max
e(in)
J =

1
𝜎2 max

u,v
C. (S11)

Moreover, since J lives in a smaller subspace than C, at these points J is also at a maxima for e(in) = v.
This demonstrates that the input field that maximizes the Fisher information can be found by computing
the best rank-one approximation of W (3) .

1.3 Changing the output projection modes

To project the output field onto a set of 𝑄 orthonormal output projection modes (OPM), we simply apply
the corresponding projection operator P to the output field. The projection operator satisfies P† · P = 1𝑄

where 1𝑄 is the identity matrix of dimension 𝑄. Note that P is generally not unitary since 𝑄 can be less
than the total number of output modes in the system. The projected output field can then be written as

e(out)
𝑃

= P† · e(out) =
𝑄∑︁
𝑞=1

𝑒
(out)
𝑃,𝑞

p𝑞 , (S12)

where p𝑞 is the 𝑞th column of P, i.e. the 𝑞th OPM, and the intensity distribution over the new OPM is
given by 𝐼

(𝑃)
𝑞 = |𝑒 (out)

𝑃,𝑞
|2. Rewriting the Fisher information in terms of an output modes basis that contains

all the information about the output field we have that,

J (𝜁) = 1
𝜎2

𝑄∑︁
𝑞=1

[
𝜕𝜁 |𝑒 (out)

𝑃,𝑞
|2
]2

, (S13a)

=
1
𝜎2

𝑄∑︁
𝑞=1

[∑︁
𝑛,𝑛′

𝑃∗𝑛𝑞𝜕𝜁 (𝑒
(out)
𝑛 𝑒

(out)
𝑛′

∗)𝑃𝑛′𝑞

]2

, (S13b)

=
1
𝜎2

𝑄∑︁
𝑞=1
⟨p𝑞 ,E𝜁 · p𝑞⟩2, (S13c)

where

E𝜁 = 𝜕𝜁

(
e(out) ⊗ e(out) ∗

)
. (S14)

It is easy to see that the E𝜁 operator is Hermitian and of rank two. Therefore, it only has two non-zero
eigenvalues, which means that all the information available in e(out) can be obtained by projecting into two
modes. Note that this result applies even to changes happening at the source and not only those encoded
in the matrix H.
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1.4 Fisher information for optimal input-output combinations

Now, if we want to find the optimal input-output combination in order to reach the precision limit for
intensity-based measurements, then we need to write the Fisher information in terms of the input field.
Moreover, as we just showed, we only need to consider projection the output into two OPM. Therefore,
setting e(out) = H · e(in) and 𝑄 = 2 in Eq. (S13b), we get

J (𝜁) = 1
𝜎2

𝑄∑︁
𝑞=1

[∑︁
𝑛,𝑛′

∑︁
𝑚𝑚′

𝜕𝜁 (H𝑛𝑚H∗𝑛′𝑚′ )𝑃∗𝑛𝑞𝑃𝑛′𝑞𝑒
(in)
𝑚 𝑒

(in)
𝑚′
∗

]2

, (S15a)

=
1
𝜎2

𝑄∑︁
𝑞=1
⟨W (4) , p∗𝑞 ⊗ p𝑞 ⊗ e(in) ⊗ e(in) ∗⟩2, (S15b)

where we defined the fourth-order tensor W (4) whose components are given by

W (4)
𝑖 𝑗𝑘𝑙

= 𝜕𝜁 (H∗𝑖𝑘H 𝑗𝑙). (S16)

Another way to understand the dependence of the Fisher information on the OPMs is by noticing that
the tensor W (3) does not follow the standard transformation rules when the output basis is changes. This is
in part due to the fact that the output space corresponds to changes in intensity which is a different physical
quantity than the output field. For this reason, when including the OPMs in the optimization it becomes
necessary to introduce the fourth-order tensor W (4) which does follow the standard transformation rules
under changes of the output basis.

2 Finding the best rank-one approximation

2.1 Best rank-one tensor approximation

Let us consider a tensor T ∈ C𝐼1 × · · · ×C𝐼𝐿 of order 𝐿. The best rank-one approximation of T is defined
as the rank-one tensor that solves the following minimization problem

min
u(1) , · · · ,u(𝐿)




T − u(1) ⊗ · · · ⊗ u(𝐿)



2

= min
u(1) , · · · ,u(𝐿)

∑︁
𝑖1 , · · · ,𝑖𝐿

(
T𝑖1 , · · · ,𝑖𝐿 − 𝑢

(1)
𝑖1
· · · 𝑢 (𝐿)

𝑖𝐿

)2
. (S17)

It is possible to show that this minimization problem is equivalent to the following maximization problem
(see Ref. [3] for proof),

max
u(1) , · · · ,u(𝐿)

���⟨T, u(1) ⊗ · · · ⊗ u(𝐿)⟩
���2 subject to




u(𝑖)


 = 1 ∀ 𝑖 ∈ {1, . . . , 𝐿}, (S18)

where ⟨· · · , · · · ⟩ denotes the inner product induced by the Frobenius norm, namely

⟨T (1) , T (2)⟩ =
𝐼1∑︁

𝑖1=1
· · ·

𝐼𝐿∑︁
𝑖𝐿=1
T (1) ∗
𝑖1 · · ·𝑖𝐿T

(2)
𝑖1 · · ·𝑖𝐿 . (S19)

Finding the best rank-one approximation is a nonlinear problem for which finding the optimal solution is
not as straightforward as it is for matrices.
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Algorithm 1 | Higher-order singular value decomposition

Input

T tensor of order L

Output

[U(1) , . . . ,U(𝐿) ] list of matrices containing the higher-order singular vectors
S core tensor

Procedure

1: S← T ⊲ initialize the core tensor
2: for 𝑛← 1 to 𝐿 do
3: T(𝑛) ← 𝑢𝑛 𝑓 𝑜𝑙𝑑 (T, 𝑛) ⊲ compute the n-mode unfolding of T
4: U, 𝑠,V← 𝑠𝑣𝑑 (T(𝑛) ) ⊲ computes singular value decomposition
5: U(𝑛) ← U ⊲ assign the left singular vectors as the higher-order singular vectors
6: S← T ×𝑛 U(𝑛)† ⊲ update core tensor by computing the n-mode product
7: end for

2.2 Higher-order singular value decomposition.

A first step into the right direction for finding the best rank-one approximation can be taken by computing
the HOSVD which is defined in what follows. A tensor T ∈ C𝐼1 × · · ·×C𝐼𝐿 of order 𝐿 can be decomposed
as a sum of rank-one tensors using a higher-order version of the SVD,

T =

𝐼1∑︁
𝑖1=1
· · ·

𝐼𝐿∑︁
𝑖𝐿=1
S𝑖1 · · ·𝑖𝐿u(1)

𝑖1
⊗ · · · ⊗ u(𝐿)

𝑖𝐿
(S20)

where the higher-order singular vectors u( 𝑗 )
𝑖

form an orthonormal basis of C𝐼 𝑗 , S𝑖1 · · ·𝑖𝐿 are the entries of
the core tensor S, and ⊗ denotes the outer product. The core tensor satisfies the properties of

1. all orthogonality: ⟨S𝑖𝑛=𝛼, S𝑖𝑛=𝛽⟩ = 0 for 𝛼 ≠ 𝛽

2. ordering:


S𝑖𝑛=1



 ≥ 

S𝑖𝑛=2


 ≥ . . .,

where S𝑖𝑛=𝛼 denotes the tensor obtained by setting the 𝑛th index equal to 𝛼. For matrices, these properties
reduce to the diagonality condition of the matrix of singular values and their ordering.

Another important property of the HOSVD is that it preserves the partial symmetries of the original
tensor, for example if T𝑖1 · · ·𝑖 𝑗 · · ·𝑖𝑘 · · ·𝑖𝐿 = T ∗

𝑖1 · · ·𝑖𝑘 · · ·𝑖 𝑗 · · ·𝑖𝐿 then u( 𝑗 )
𝑖

= u(𝑘 )
𝑖
∗ and S𝑖1 · · ·𝑖 𝑗 · · ·𝑖𝑘 · · ·𝑖𝐿 = S∗

𝑖1 · · ·𝑖𝑘 · · ·𝑖 𝑗 · · ·𝑖𝐿 .
The biggest advantage of the HOSVD against other types of tensor decompositions is that it can be easily
computed via the SVD of its matrix unfoldings (see Algorithm 1 and Refs. 4, 5 for more details). However,
when truncating the HOSVD to a single term we do not get the best rank one approximation, but we do
get an excellent first guess.

2.3 Alternating least-squares algorithm

Finding the best rank-one approximation is a particular case of more general types of lower-rank tensor
approximations based around the polyadic and Tucker decompositions [6, 7]. There are several algorithms

5
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Algorithm 2 | Alternating least squares

Input

T tensor of order L
[u(1) , . . . , u(𝐿) ] initial guess for the best-rank-one approximation
P symmetries of the tensor
𝑁𝑖𝑡𝑒𝑟 number of iterations

Output

[u(1) , . . . , u(𝐿) ] list of vectors providing the best-rank-one approximation

Procedure

1: 𝐿 ← 𝑜𝑟𝑑𝑒𝑟 (T) ⊲ get the order of the tensor
2: for 𝑛← 1 to 𝑁𝑖 𝑡𝑒𝑟 do
3: for 𝑚 ← 1 to 𝐿 do
4: u(𝑚) ← minu(𝑚)




T − u(1) ⊗ · · · ⊗ u(𝐿)



2

⊲ solve least squares minimization
5: end for
6: [u(1) , . . . , u(𝐿) ] ← symmetrize( [u(1) , . . . , u(𝐿) ],P) ⊲ impose symmetries
7: end for

that have been developed to find them and that could, in principle, be applied to solve the optimization
problem in Eq. (S17). Here, we use the iterative alternating-least squares (ALS) algorithm and use as
a starting point the first higher-order singular vectors. For the ALS algorithm, instead of tackling the
minimization over a, b, and c all at once, we iterate over each vector by solving the standard least-square
problem that results from leaving the other ones fixed (see Algorithm 2). For example, we start by solving

min
a
∥T − a ⊗ b ⊗ c∥, (S21)

for which we can find the exact solution. Then, we do the same for b and c. This is repeated for a predefined
number of times until convergence is reached.

One issue that can arise from the solution is that it does not satisfy the symmetries of the original
tensor. Here, we were able to adapt the ALS algorithm in order to keep the symmetries of the original
tensor if needed. Let us consider the case of the third-order tensor W (3) which has a partial Hermitian
symmetry in the last two indices,W (3)

𝑖 𝑗𝑘
=W (3)∗

𝑖𝑘 𝑗
, where we seek the vectors a and b that solve

min
a,b
∥T − a ⊗ b ⊗ b∗∥. (S22)

Initially, we do not force the symmetry and allow the last vector to be different, say c and start by mini-
mizing ∥T − a ⊗ b ⊗ c∥. We proceed as a standard ALS routine by fixing b and c, and solving the mini-
mization problem

min
a
∥T − a ⊗ b ⊗ c∥, (S23)

which is a standard least-squares problem with a fixed solution. Then, we do the same for b and c. Before

6
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performing another loop, we symmetrize the lower rank tensor by setting

b←
√︁
∥b∥∥c∥

2

(
b
∥b∥ +

c∗

∥c∥

)
(S24a)

c←b∗ (S24b)

This simple adaptation gives enough freedom so the algorithm converges and provides a solution with the
desired symmetry. A similar approach is taken to compute the rank-one approximation of W (4) .

3 Including the output projection modes in the Fisher information opti-
mization

3.1 Finding the optimal output projection modes

As demonstrated in Sec. 1.3, for a fixed input field the optimal OPMs are given in terms of the Hermitian
matrix,

E𝜁 = 𝜕𝜁

(
e(out) ⊗ e(out) ∗

)
= 𝛼

(
e1 ⊗ e∗2 + e2 ⊗ e∗1

)
, (S25)

where e1 = e(out)/


e(out)

 and e2 = 𝜕𝜁 e(out)/



𝜕𝜁 e(out)

, and 𝛼 =


e(out)



𝜕𝜁 e(out)

. In order to find these

optimal OPMs, we first need to write this matrix in terms of an orthogonal basis. Moreover, since due to
its rank only two elements suffice. Using the normalized output field e1 and the normalized orthogonal
component of e2 we have that,

E𝜁 = 𝛼

[
(𝜌 + 𝜌∗)e1 ⊗ e∗1 +

√︃
1 − |𝜌 |2

(
u ⊗ e∗1 + e1 ⊗ u∗

) ]
, (S26)

where

u =
1√︁

1 − |𝜌 |2
(−𝜌e1 + e2) and e∗1 · u = 0 and e∗1 · e2 = 𝜌 = 𝜌𝑟 + i𝜌𝑖 , (S27)

with 𝜌𝑟 and 𝜌𝑖 being the real and imaginary parts of 𝜌, respectively. The two non-zero eigenvalues can
then be found to be given by

𝜆± = 𝛼

(
𝜌𝑟 ±

√︃
1 − |𝜌 |2 + 𝜌2

𝑟

)
, (S28)

where it is easy to see that 𝜆+ ≥ 0, and the corresponding normalized eigenvectors are

v± = 𝛽±

[(
𝜌𝑟 ±

√︃
1 − |𝜌 |2 + 𝜌2

𝑟

)
e1 +

√︃
1 − |𝜌 |2u

]
, (S29)

with

𝛽± = 1/

√︄
2
[
1 − |𝜌 |2 + 𝜌𝑟 (𝜌𝑟 ±

√︃
1 − |𝜌 |2 + 𝜌2

𝑟 )
]
. (S30)

Now, the Fisher information in Eq. (S13c) can be rewritten as

J (𝜁) = 1
𝜎2

2∑︁
𝑞=1
⟨p𝑞 ,

(
𝜆+v+ ⊗ v∗+ + 𝜆−v− ⊗ v∗−

)
· p𝑞⟩2. (S31)
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The optimal OPMs need to be given by a linear combination of the eigenvectors and be orthogonal between
them. Therefore, we can write them as,

p1 = cos 𝜃v+ + sin 𝜃𝑒i𝜙v− , p2 = sin 𝜃𝑒−i𝜙v+ − cos 𝜃v− . (S32)

Substituting these expressions into the Fisher information we get,

J (𝜁) = 1
𝜎2

[(
cos2 𝜃𝜆+ + sin2 𝜃𝜆−

)2
+
(
sin2 𝜃𝜆+ + cos2 𝜃𝜆−

)2
]
, (S33)

which is a periodic function with period 𝜋/2. Taking the first and second derivatives with respect to 𝜃, we
get

𝜕𝜃J (𝜁) = −(𝜆+ − 𝜆−)2 sin(4𝜃), (S34)

𝜕2
𝜃J (𝜁) = −4(𝜆+ − 𝜆−)2 cos(4𝜃). (S35)

Given that 𝜆+ − 𝜆− = 2𝛼
√︁

1 − |𝜌 |2 + 𝜌2
𝑟 > 0, the Fisher information attains it maxima for 𝜃 = 0, thus

showing that the optimal OPMs are the eigenvectors of E𝜁 ,

p(optimal)
1 = v+, p(optimal)

2 = v− . (S36)

For small perturbations and unitary systems in which the perturbation does not induce losses, it can
be shown that 𝜌𝑟 = 0. In this case, the eigenvectors are given by the symmetric and antisymmetric
combinations of the output field e(out) and the orthogonal component of the derivative 𝜕𝜁 e(out) .

3.2 Finding the optimal input-output combination

The first step in finding the optimal input-output combination is to compute the fourth-order tensor W (4) .
Given the number of pixels used as output modes to measure H, the size of this tensor would be too large
to be useful for computations. However, since the number of input modes is much lower, one can see that
using all the 1444 output pixels might be an overkill. Therefore, we first compute the SVD for the two
TMs that we used to compute W

(3) and use their output singular vectors to form an orthonormal set of
output modes. This new set of output modes has double the number of input modes used, but it allows us
to capture all the information encoded in the pixel basis but at a much smaller size. Then, we project the
TMs onto this set of output modes and use this projected TMs to compute W

(4) .
As mentioned in the main text, when trying to find the optimal input-output combination that allows

reaching the precision limit, the Fisher information given by Eq. (6) of the main text no longer takes
the form of a lower-rank tensor decomposition. Nonetheless, it is possible to rewrite it as a nonlinear
optimization where only the expansion coefficients of the input field in terms of the input modes are used
as optimization parameters. This is done by first computing the output field using the TM, then getting the
optimal OPMs and using those to compute the Fisher information. This optimization was implemented
using the neural network framework PyTorch. Here again, we need to provide a first guess, and, as for the
ALS algorithm, we chose to use the first term of the HOSVD of W (4) .

4 Experimental characterization of an MMF under perturbation

4.1 Experimental setup

The optical setup is represented in Fig. S1. The light source consists of a continuous linearly polar-
ized laser beam at 1550 nm (TeraXion NLL) injected into a 10:90 polarization-maintaining fiber coupler
(PNH1550R2F1) in order to separate it into the shaped signal field and the reference field. The 90% arm
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Fig. S1 | Optical setup. DMD, digital micromirror device; Li, lenses; QWP, quarter-wave plates; M, mirror; D,
diaphragm; BD, beam displacer; BS, beam splitter. The shutter is used to block the reference beam in order to
perform intensity measurements.

is collimated and expanded to illuminate a digital micromirror device (DMD) (Vialux V-650L) which is
used to modulate the signal field in amplitude and phase using Lee holograms [8, 9]. The light is converted
into left circular polarization using a quarter-wave plate. The shaped signal field is then imaged with a
4f system onto the input facet of a 25 cm-long step-index fiber with a 50 µm core and 0.22 numerical
aperture, which is held approximately straight. The output facet is imaged via another 4f system onto an
InGaAs camera (Xenics Cheetah 640-CL 400 Hz) after passing through a quarter-wave plate, followed by
a beam displacer to select the left-circularly polarized component. The other 10% arm is used to produce
a tilted reference that is made to interfere with the signal field in order to be able to retrieve the output
field via off-axis holography [10]. An Arduino-controlled shutter allows blocking the reference field to
perform intensity measurements of the signal field. The fiber can be deformed, roughly in the middle, by
pressing on it using a 50 nm precision dc servo motor actuator (Thorlabs Z812). All the values reported
for the deformation correspond to the linear displacement of the actuator and not the deformation of the
fiber core, which is much smaller since most of the deformation is absorbed by the coating of the fiber.

4.2 TM and W
(3) measurements

First, we measure the TM of the MMF in the pixel basis, by sending 7200 square layouts consisting
of 37 × 37 square macropixels whose value is either zero or a random phase of amplitude one. Each
macropixel is formed by grouping 16 × 16 pixels of the DMD, where the desired phase and amplitude
value is encoded via Lee holograms [8] and selecting the first order of diffraction at the Fourier plane. The
corresponding output fields are recovered from the interferograms between the reference and signal fields,
and subsequently projected onto a square pattern of 44× 44 macropixels formed by grouping 4× 4 pixels
of the camera. Regrouping all input and output fields into the columns of matrices X and Y, respectively,
we reconstruct the TM via H = Y · X−1 where X−1 denotes the pseudoinverse of X.

Then, we compute the SVD of the TM in the pixel basis and use it to identify the fiber modes as the
singular vectors with singular values in the almost constant plateau (see Fig. S2). For the fiber we used there
were 144 fiber modes as opposed to the 129 predicted through numerical simulations. This indicates that
some cladding modes are sufficiently close to the cutoff that they propagate without undergoing significant
absorption for the short length we are using. All subsequent TM measurements are performed by sending
1440 random inputs obtained by randomly superimposing all 144 fiber modes. This allows us to drastically
reduce the size of the TM and the higher-order tensors without losing significant information. The output
fiber modes are simply the outputs generated by sending the fiber modes as inputs. These outputs are
orthogonal since they correspond to the first 144 output singular vectors of the TM measured in the pixel
basis.

9
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Fig. S2 | Identifying the fiber modes. Singular values of the TM measured in the pixel basis. The fiber modes
are identified as the singular vectors for which the singular values light in the plateau. The cutoff value is marked
by the vertical red line.

To determine the third-order tensor W (3) , we measure two TMs, H(±) , for two different values of the
deformation, 𝜁𝑖 ± 𝑑𝜁/2, centered around the reference value 𝜁𝑖 . Then, these two measurements can be
used to approximate the derivative with respect to 𝜁 using finite differences so that

W (3)
𝑖 𝑗𝑘

=
H(+)∗
𝑖 𝑗

H(+)
𝑖𝑘
− H(−)∗

𝑖 𝑗
H(−)
𝑖𝑘

𝑑𝜁
. (S37)

A similar approach is taken to construct the fourth-order tensor W (4) .

5 Experimental estimation of the deformation

5.1 Noise characterization

Before performing the experimental estimation of small deformations, we need to verify the veracity of the
assumption of Gaussian noise made in this work for our setup. For this, we performed a set of characteri-
zation measurements for two values of the input power and the four fields used to perform the estimation.
The first one was performed at the highest input power possible without saturating any pixels of the camera
and taking care to send the same amount of energy for each input field. The second one was performed
using only 20% of the total power used for the first one. For each set, we sent 500 copies of the four
fields and used the measured output intensity distributions to compute the mean and standard deviation
value of the intensity over the output pixels as shown in Fig. S3. At higher power we can clearly see some
intensity-dependent behavior in the standard deviation which is used to characterize the noise, particularly
for the MIIC for which the focal spot is clearly visible. At lower power, however, this dependence on the
intensity for the noise is almost completely gone with the 𝜎𝑛 values being fairly uniform.

To confirm the assumption of Gaussian noise, Fig. S4 shows the quantile-quantile plot for the mea-
sured intensity deviation from its mean value including every pixel, realization and measured field when
compared to a Gaussian distribution for high and low intensity values. This plot compares the cumulative
distribution functions obtained from the theoretical Gaussian distribution and the data. If the data follows
the model then the points obtained (shown as blue dots) should follow a straight line at 45◦ (shown as a
continuous red line). For the high intensity data, we see a clear deviation for positive values where the
points clearly take larger values than those predicted by a Gaussian distribution. This means that the dis-
tribution for the data has a positive heavy tail which is consistent with the intensity dependent noise that
we see in Extended Data Figure 3. However, this deviation disappears at lower intensity values where all
the points follow closely the predicted diagonal line, thus demonstrating that our assumption of Gaussian
noise is valid.
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Fig. S3 | Noise characterization. a-d,i-l, Mean intensity distributions and e-h,m-p, standard deviations for the
four fields used for the parameter estimation at high-intensity values (a-h) and when only 20% of the light is sent
(i-p).

Fig. S4 | Noise QQ plot. a-b, Quantile-quantile plot for the measured intensity deviation from its mean value
including every pixel, realization and measured field when compared to a Gaussian distribution for high (a) and
low (b) input intensity values.
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Fig. S5 | Change in intensity. a-d,i-l, Mean and e-h,m-p, single change in intensity distributions for the four
fields for the measurements taken to calibrate the derivative and acquired at high-intensity values (a-h), and the
same ones but using only 20% of the light sent for the calibration (i-p).

5.2 Estimating the deformation

Given that the perturbations under consideration are small, it is sensible to assume a linear model for the
measured intensity distribution 𝝌 over the output modes after a change Δ𝜉 in the perturbation. Explicitly,
we have that

𝝌 ≈ I(𝜁𝑖) + 𝜕𝜁 I(𝜁𝑖)Δ𝜁 +𝔀(𝜎), (S38)

where I(𝜁𝑖) represents the output intensity distribution over the output modes prior to changing the defor-
mation, I𝜁 (𝜁𝑖) is the derivative of I with respect to 𝜁 and evaluated at 𝜁𝑖 , and 𝔀(𝜎) is a vector of normally
distributed independent random variables with zero mean and standard deviation 𝜎. For this linear model
the minimum variance unbiased estimator [1] is given by

Δ𝜁 (est) (𝝌) =
𝜕𝜁 I(𝜁𝑖) · [𝝌 − I(𝜁𝑖)]

I𝜁 (𝜁𝑖)

2 . (S39)

In this model, both the reference intensity distribution I and the derivative 𝜕𝜁 I are assumed to be
known. To calibrate the derivative, we first set the input power as high as possible without saturating any
pixels for any of the fields used for the estimation. Then, we perform 500 independent measurements
for each field and for two deformations centered around the reference value 𝜁𝑖 . Then, the derivative of

12



SI for Reaching the precision limit with tensor-based wavefront shaping

the intensity distribution of each field is estimated by taking the difference between the mean for each
deformation and dividing by the total deformation performed between the two points. As can be seen in
Fig. S5, the distribution of the mean change in intensity obtained from these calibration measurements
is quite smooth, even though the effect of noise is noticeable for each individual realization, and with
its main values above the noise level shown in Fig. S3 for all the fields. Also shown in Fig. S5 are the
distribution of the mean change in intensity and a single realization at the lower input power used and
the same deformations used for the calibration. Here, we can see that each individual change is quite
susceptible to noise and that its effect is even noticeable for the mean distribution, particularly for the
worst performing field given by the random wavefront. This shows that the calibration at high intensity is
only necessary in order to isolate the effects of the inherent sensibility of the input field to the perturbation
and those arising from a poor calibration, particularly for the random input for which it is simply not
possible to accurately estimate the derivative at a low intensity. For the reference intensity distribution,
we can use the same input power used for the estimations since the mean intensity distribution is well
above the noise level for all fields (see Fig. S3). Moreover, using the same input power for the reference
as for the estimation allows the nonuniform background to be automatically removed.

6 Moving the perturbation along the fiber length

6.1 Fisher information as a function of the location of the deformation

It is interesting to study the dependence of the Fisher information on the specific location of the perturba-
tion. To study this dependence we consider the following model. Given that the deformation is applied at
a particular point along the fiber, we can divide our system, and thus the TM, into three part:

H = H2 · D ·H1, (S40)

where H1 represents the transmission of light up to the region that is deformed, D represents the propaga-
tion through the perturbation, and H2 the propagation through the final stretch following the deformation.
Propagation through small stretches of an unperturbed fiber of length Δ𝑧 can be modelled by the diagonal
matrix, P(Δ𝑧) = exp(i𝜷Δ𝑧), where 𝜷 is the diagonal matrix containing the propagation constants of the
modes of the fiber. Therefore, one way to model the displacement of the deformation is by applying the
operator P(Δ𝑧) representing the axial shifts to reduce the propagation distance on one side and increase it
on the other side

H(Δ𝑧) = H2 · P(Δ𝑧) · D · P(−Δ𝑧) ·H1. (S41)

Given that the length of the fiber is fairly small and the deformation not too strong, the matrices H2 and
H1 are mainly diagonal matrices (see e.g. Refs. [11, 12]). Therefore, it is safe to assume that H2 and H1
commute with P(𝑧) thus giving

H(Δ𝑧) = P(Δ𝑧) ·H2 · D ·H1 · P(−Δ𝑧). (S42)

With this model we can compute how the Fisher information evolves as we change the location of the
perturbation for the various channels that were derived in the main manuscript for the locationΔ𝑧 = 0. The
results are shown in Fig. S6. These plots show that the optimal fields found at Δ𝑧 remain quite sensitive
within a range of 0.5 mm. Depending on the application, this can be more than enough to account for
inaccuracies during its implementation. These results are perfectly suited to enhance the precision of
point sensors. This type of sensor is designed for a specific parameter and at a specific location, which
is what we consider. In this case, a significant drop in the Fisher information as we move away from
the region of interest would be beneficial for these sensors since it would make them less sensitive to
perturbations happening in other parts of the system.
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Fig. S6 | Changing the location of the perturbation. a-b, Evolution of the Fisher information with respect to
the location of the perturbation for one-thousand random inputs (continuous line show the mean and the shaded
region the full range), the maximum value of the fiber modes, the maximum value of the third-order ISVs, the
MIIC, the channel using a single output projection mode, and the channel allowing reaching the precision limit by
tailoring both the input and output. Note that for each value Δ the mean value for the random inputs has been
used to rescale the others to simplify the comparison. Two different ranges for Δ𝑧 are shown, a large range of 2
cm (a) and a smaller range of 2 mm (b).
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Fig. S7 | Blind estimation. a-c, Histogram and mean value (vertical lines) of the Fisher information for 1000
random inputs when projecting the output field onto the pixel basis, the fiber modes, and the output higher-order
singular vector. The number of modes used at the output for the fiber modes and the fourth-order OSVs is a, 30,
b, 10, and c, 2.

If, instead, the goal is to develop a distributed sensor which can detect perturbations with high sensi-
tivity along the full length of the fiber then the solutions shown in the main manuscript will not be optimal.
Nonetheless, our formalism can help address this problem as well. From Fig. S6 it can be seen that the
third-order ISV actually provides us with a channel that remains more sensitive than the fiber modes even
for large variations of the position of the deformation. This shows that it should be possible to find an
input field that is optimal for sensing perturbations irrespective of their location and that the HOSVD
provides us again with an excellent starting point, showing again the usefulness of the techniques we are
introducing.

6.2 Optimal blind estimation output projection modes

Another thing that can be noted from Fig. S6 is that the channels for which the OPMs have been optimized
exhibit larger variations in their Fisher information as a consequence of their specificity to the deformation
and specific output field. Much less noticeable variations are present for the channels using the pixel basis
as OPMs because this basis is not optimized for any field in particular. These features point to another
strategy for dealing with distributed perturbations in which optimal OPMs that do not depend specifically
on the input field need to be found. Using the fourth-order output singular vectors (OSVs) of the fourth-
order tensor W (4) as OPMs, it is possible to boost the precision for any input field on average. Figure S7
shows the histograms and mean values obtained when computing the Fisher information for one thousand
random inputs when the OPMs are the pixels of a camera, the modes of the fiber, and the fourth-order
OSVs.

The benefits of using other OPMs compared to the pixels of the camera become obvious. Even when
just 10 of the fiber modes or the fourth-order OSVs are used, they significantly increase the mean value
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Fig. S8 | Blind estimation with changing location. Mean value of the Fisher information obtained for one-
thousand random input fields using as OPMs the pixels of a camera, the fiber modes and the fourth-order OSVs.
For the pixel basis the shaded region indicates the range obtained and for the fiber modes and the fourth-order
OSVs three different curves are shown for each, the continuous line uses 30 elements, the dashed line uses 10,
and the dotted line only 5.

with respect to that obtained with the pixel basis. In particular, the fourth-order OSVs exhibit a much
higher mean Fisher information than the one obtained with the fiber modes, and remain a better candidate
even when only two of its elements are used as OPMs. Similarly to what we did before, it is also possible
to study their behavior as we change the position of the deformation. The results are shown in Fig. S8
where it can be seen that while there is still a clear dependence on the specific location of the deformation,
the fourth-order OSVs provide a better alternative to the fiber modes and the pixels of a camera throughout
a large displacement range of the perturbation.
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