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Supplementary Section S1 – Fisher information for the optimal
detection scheme

In this section, we calculate the Fisher information J (θ) for the optimal homodyne detection
scheme, which we show to be equal to the quantum Fisher information I(θ) for coherent
states and statistically-independent noise fluctuations. We then define the Fisher informa-
tion operator from the scattering matrix of the system, and we provide the expression of the
minimum variance unbiased estimator. We demonstrate that maximum information states
can also be iteratively identified by performing time-reversal of a small perturbation using
phase conjugation. Finally, we show that the Fisher information operator can be used in
the context of multiple parameter estimations, in order to maximize the trace of the Fisher
information matrix.

S1.1 – Fisher information

Let us describe the measured data by a N -dimensional random variable X and a joint
probability density function p(X; θ) parameterized by an arbitrary parameter θ. In general,
the Fisher information is expressed by1

J (θ) = E
(
[∂θ ln p(X; θ)]2

)
, (S1)

where E denotes the expectation operator acting over noise fluctuations. In the shot-noise
limit, p(X; θ) can be obtained using two equivalent strategies2:

• Using a fully quantized picture, we can consider that p(X; θ) is determined by the
quantum nature of the field. We define |αk〉 as being the single-mode coherent
(Glauber) state for the k-th outgoing spatial mode. Superposing this state with a



reference coherent state |rk〉, the occupation of the state follows a Poisson distri-
bution of expectation value |αk + rk|2, where αk and rk are the eigenvalues of the
annihilation operator â for the states |αk〉 and |rk〉, respectively.

• Using a semi-classical picture, we can consider that p(X; θ) is determined by the
quantum nature of the photodetection process. We define Eout

k as being the complex
value of the classical field for the k-th outgoing spatial mode. Superposing this field
with a reference field Eref

k , the signal measured by the photodetector follows a Poisson
distribution of expectation value |Eout

k + Eref
k |2.

Since the annihilation operator â is also the complex amplitude operator for coherent states2,
we can write Eout

k = 〈αk|â|αk〉 = αk and Eref
k = 〈rk|â|rk〉 = rk, evidencing the equivalence

between the two approaches.

Adopting the semi-classical notation and considering that noise fluctuations are sta-
tistically independent for any two different outgoing modes, the joint probability density
function p(X; θ) is thus expressed by

p(X; θ) =
N∏
k=1

e−|E
out
k +Eref

k |
2 |Eout

k + Eref
k |2Xk

Xk!
. (S2)

Injecting this expression in Eq. (S1), we obtain

J (θ) =
N∑
k=1

[
∂θ
(
|Eout

k + Eref
k |2

)]2
|Eout

k + Eref
k |2

. (S3)

For a high-intensity reference field which does not depend on θ (i.e., for |Eref
k |2 � |Eout

k |2
and ∂θEref

k = 0), this expression simplifies to

J (θ) =

N∑
k=1

(
∂θ

[
Eout
k

(
Eref
k

)∗
+ Eref

k

(
Eout
k

)∗])2

|Eref
k |2

. (S4)

We now introduce Eout
k = Qout

k + iP out
k and Eref

k = |Eref
k |eiφk . Equation (S4) becomes

J (θ) = 4

N∑
k=1

[
(∂θQ

out
k ) cosφk + (∂θP

out
k ) sinφk

]2
. (S5)

For any integer m, the phase angles of the reference field which maximize Eq. (S5) are given
by φmax

k = arg(∂θE
out
k ) + mπ, and those which minimize Eq. (S5) are given by φmin

k =
arg(∂θE

out
k ) + (m + 1/2)π. Choosing φmin

k as phase angles of the reference field yields
J (θ) = 0. In contrast, choosing φmax

k as phase angles of the reference field yields

J (θ) = 4
N∑
k=1

|∂θEout
k |2 . (S6)

This expression can be identified as the Fisher information for a random vector composed
of N complex random variables whose real and imaginary parts are independent normally
distributed random variables with variance σ2 = 1/4.
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S1.2 – Quantum Fisher information

The Fisher information J (θ) sets a lower bound on the variance of unbiased estimators
of θ for a definite measurement scheme (i.e. the homodyne scheme in our case). A more
general lower bound exists, which applies to any quantum measurement described by a
positive-operator-valued measure (POVM). This lower bound is given by the reciprocal of
the quantum Fisher information I(θ), which is defined by 3

I(θ) = Tr(ρoutL
2
out) , (S7)

where ρout is a density operator describing the quantum state of the system and Lout is the
symmetrized logarithmic derivative of ρout with respect to θ defined as follows:

ρoutLout + Loutρout = 2 ∂θρout . (S8)

The Fisher information J (θ) and the quantum Fisher information I(θ) satisfy the inequality
I(θ) ≥ J (θ), which is saturated when the POVM considered for the calculation of J (θ) is
optimal.

In our model, ρout describes an N -mode coherent state composed of simply-separable
pure states, and thus Eq. (S7) simplifies to4,5

I(θ) = 4

N∑
k=1

(
〈∂θαk|∂θαk〉 − |〈∂θαk|αk〉|2

)
, (S9)

where |αk〉 is the single-mode coherent state associated with the k-th mode and |∂θαk〉 is its
derivative with respect to θ. We can represent |αk〉 in the basis of Fock states |n〉 labeled
by the occupation number n, which reads2

|αk〉 = e−|αk|2/2
∞∑
n=0

αnk
(n!)1/2

|n〉 , (S10)

where αk denotes the eigenvalue of the annihilation operator. Taking the derivative of this
expression with respect to θ leads to

|∂θαk〉 = −Re (αk∂θα
∗
k) e
−|αk|2/2

∞∑
n=0

αnk
(n!)1/2

|n〉+ ∂θαke
−|αk|2/2

∞∑
n=1

nαn−1
k

(n!)1/2
|n〉 . (S11)

We can now use Eqs. (S10) and (S11) to calculate the two terms 〈∂θαk|∂θαk〉 and |〈∂θαk|αk〉|2
that appear in Eq. (S9). Let us first calculate 〈∂θαk|∂θαk〉 from Eq. (S11): using the or-
thonormality of Fock states, we obtain

〈∂θαk|∂θαk〉 = Re (αk∂θα
∗
k)

2 e−|αk|2
∞∑
n=0

|αk|2n

n!
− Re (αk∂θα

∗
k)αk∂θα

∗
ke
−|αk|2

∞∑
n=1

|αk|2(n−1)

(n− 1)!

− Re (αk∂θα
∗
k)α

∗
k∂θαke

−|αk|2
∞∑
n=1

|αk|2(n−1)

(n− 1)!
+ |∂θαk|2e−|αk|2

∞∑
n=1

n|αk|2(n−1)

(n− 1)!
.

(S12)
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This expression can be simplified by using the following properties of exponential series:
∞∑
n=0

|αk|2n

n!
= e|αk|2 , (S13)

∞∑
n=0

(n+ 1)|αk|2n

n!
= (1 + |αk|2)e|αk|2 . (S14)

Injecting Eqs. (S13) and (S14) into Eq. (S12) leads to

〈∂θαk|∂θαk〉 = |∂θαk|2 + Im(αk∂θα
∗
k)

2 . (S15)

Let us now calculate 〈∂θαk|αk〉 from Eqs. (S10) and (S11): using again the orthonormality
of Fock states, we obtain

〈∂θαk|αk〉 = −Re (αk∂θα
∗
k) e
−|αk|2

∞∑
n=0

|αk|2n

n!
+ αk∂θα

∗
ke
−|αk|2

∞∑
n=1

|αk|2(n−1)

(n− 1)!
. (S16)

Injecting Eq. (S13) into Eq. (S16) leads to

|〈∂θαk|αk〉|2 = Im(αk∂θα
∗
k)

2 . (S17)

Finally, injecting Eqs. (S15) and (S17) into Eq. (S9) results in

I(θ) = 4
N∑
k=1

|∂θαk|2 . (S18)

Recalling that αk = Eout
k , the Fisher information J (θ) given by Eq. (S6) equals the quantum

Fisher information I(θ) given by Eq. (S18), thereby demonstrating that the homodyne
detection scheme that we considered in Section S1.1 constitutes the optimal POVM for the
estimation of θ.

S1.3 – Fisher information operator

In the formalism of the S-matrix, the outgoing field state is expressed by |Eout〉 = S|Ein〉,
where S denotes the scattering matrix of the system. (Note that the incident state |Ein〉 and
the outgoing state |Eout〉 are defined here in the Hilbert space of all incident and outgoing
spatial modes, whereas |αk〉 introduced in Section S1.1 was defined in the Hilbert space of all
quantum states for the k-th outgoing spatial mode.) We can thus write Eout

k as a projection
of the outgoing state on the state associated with the k-th mode, which in bra-ket notation
reads Eout

k = 〈k|S|Ein〉, leading to

J (θ) = 4

N∑
k=1

|〈k|∂θS|Ein〉|2 . (S19)

This expression can be expanded into

J (θ) = 4

N∑
k=1

〈Ein|(∂θS)†|k〉〈k|∂θS|Ein〉 . (S20)
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Using the completeness relation
∑

k|k〉〈k| = IN where IN is the N -dimensional identity
matrix, we finally obtain

J (θ) = 4 〈Ein|(∂θS)†∂θS|Ein〉 . (S21)

In this expression, we can identify the operator Fθ = (∂θS)†∂θS, which we refer to as
Fisher information operator. We obtain the quadratic form J (θ) = 4〈Ein|Fθ|Ein〉, which
is the expression of the Fisher information given in the manuscript. Finally, for a unitary
scattering matrix (S† = S−1), the operator Fθ is expressed by

Fθ = (−iS−1∂θS)2 , (S22)

where we used the identity ∂θS−1 = −S−1(∂θS)S−1. Introducing the generalized Wigner-
Smith operator6, which is defined by Qθ = −iS−1∂θS, we obtain the identity

Fθ = Q2
θ , (S23)

which implies that Fθ and Qθ share the same eigenstates. Writing the eigenvalue equation
Qθ|E in

j 〉 = Θj |E in
j 〉 where Θj is the j-th eigenvalue ofQθ and |E in

j 〉 is the associated eigenstate,
the outgoing field state satisfies |∂θEout

j 〉 = iΘj |Eout
j 〉. For a scattering matrix evaluated at

θ0 and a small parameter variation ∆θ = θ− θ0, this results in |Eout
j (θ)〉 ' eiΘj∆θ|Eout

j (θ0)〉.
Thus, in the limit of a unitary scattering matrix, maximum information states are insensitive
with respect to small variations in θ except for a global phase factor.

S1.4 – Minimum variance unbiased estimator

For small parameter variations around a given parameter value noted θ0, the measured data
can be described by the following linear model:

Xk = Itot
k + (∂θI

tot
k )(θ − θ0) +Wk , (S24)

where Xk represents the intensity data measured by the camera at the k-th sampling point,
where Itot

k and ∂θItot
k are evaluated at θ0, and where Wk are N independent and normally

distributed random variables with mean zero and variance Itot
k . The normal distribution is

indeed a good approximation of the Poisson distribution for large expectation values. In the
case of linear models, general expressions exist for the minimum variance unbiased estimator,
which depends on the noise statistics1. For the linear model expressed by Eq. (S24), the
minimum variance unbiased estimator reads

θ̂(X)− θ0 =
1

J (θ0)

N∑
k=1

(∂θI
tot
k )(Xk − Itot

k )

Itot
k

, (S25)

where θ̂(X) denotes the estimator of θ (i.e. the function devised to estimate θ from the
measured data X). Writing Itot

k = |Eout
k + Eref

k |2 and recalling that |Eref
k |2 � |Eout

k |2 and
∂θE

ref
k = 0, this expression simplifies to

θ̂(X)− θ0 =
1

J (θ0)

N∑
k=1

(
∂θ

[
Eout
k

(
Eref
k

)∗
+ Eref

k

(
Eout
k

)∗])
(Xk − |Eout

k + Eref
k |2)

|Eref
k |2

. (S26)
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Introducing Eref
k = |Eref

k |eiφk and using the phase angles φmax
k = arg(∂θE

out
k ) which maxi-

mize the Fisher information leads to

θ̂(X)− θ0 =
2

J (θ0)

N∑
k=1

|∂θEout
k |(Xk − |Eout

k + Eref
k |2)

|Eref
k |

. (S27)

In this expression, J (θ0) is obtained from Eq. (S6), Eout
k is obtained from Eout

k = 〈k|S|Ein〉
and ∂θE

out
k is obtained from ∂θE

out
k = 〈k|∂θS|Ein〉, with a scattering matrix S evaluated

at θ0.

S1.5 – Finding maximum information states using phase conjugation

Time reversal using phase conjugation is a well-known technique that allows for instance
to focus waves7–9 or to identify open channels10 in multiple scattering media. In some
implementations, light waves are focused into a scattering medium by performing time-
reversal of a perturbation using phase conjugation11–13. Here, we show that an iterative
procedure based on such techniques actually converges toward maximum information states.
Light waves are then focused onto those specific areas of the object that are most affected
by the perturbation, in such a way that the Fisher information available to the observer is
maximized. In order to demonstrate the link between maximum information states and time-
reversed adapted perturbation, we must restrict the analysis to a N ×N scattering matrix
that satisfies the reciprocity relation ST = S (or equivalently S† = S∗). The procedure
then relies on an iterative approach used to calculate the incident state |Ein

(n)〉 at the n-th
iteration from measurements based on an incident state |Ein

(n−1)〉. The medium is illuminated
with the incident state |Ein

(n−1)〉 and, before a perturbation ∆θ has occurred, the measured
outgoing state is |Eout

(n−1)(θ)〉 = S(θ)|Ein
(n−1)〉. For the same incident state, the outgoing state

measured after the perturbation has occurred is |Eout
(n−1)(θ+∆θ)〉 = S(θ+∆θ)|Ein

(n−1)〉. The
new incident state |Ein

(n)〉 is then obtained by phase-conjugating the difference between these
two outgoing states. In the limit of a small perturbation ∆θ, this leads to

|Ein
(n)〉 = A

−1/2
(n) ∂θS

∗|Ein
(n−1)〉

∗ , (S28)

where A−1/2
(n) is a (real-valued) normalization coefficient. Using the relation S∗ = S†, we

can write ∂θS∗ = ∂θS
†. Then, starting from a random incident state |Ein

(0)〉 and after n
successive iterations, we obtain

|Ein
(n)〉 = B

−1/2
(n)

[
(∂θS)†∂θS

]n/2
|Ein

(0)〉 if n is even, (S29)

|Ein
(n)〉 = B

−1/2
(n)

[
(∂θS)†∂θS

]n/2−1
∂θS

†|Ein
(0)〉
∗ if n is odd. (S30)

Choosing the normalization condition 〈Ein
(n)|E

in
(n)〉 = 1, the (real-valued) normalization co-

efficient B(n) is expressed by

B(n) = 〈Ein
(0)|
[
(∂θS)†∂θS

]n
|Ein

(0)〉 . (S31)
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When the medium is illuminated with the incident state |Ein
(n)〉, the Fisher information

associated with the resulting outgoing state reads

J(n)(θ) = 4〈Ein
(n)|(∂θS)†∂θS|Ein

(n)〉 . (S32)

Using either Eq. (S29) if n is even or Eq. (S30) if n is odd, Eq. (S32) becomes

J(n)(θ) = 4
〈Ein

(0)|[(∂θS)†∂θS]n+1|Ein
(0)〉

〈Ein
(0)| [(∂θS)†∂θS]

n |Ein
(0)〉

. (S33)

Any incident state can be decomposed in the orthonormal basis formed by the eigenstates
of Fθ. In this basis, the initial state |Ein

(0)〉 is expressed by

|Ein
(0)〉 =

N∑
j=1

γj |E in
j 〉 , (S34)

where |E in
j 〉 is the j-th eigenstate of Fθ and γj = 〈E in

j |Ein
(0)〉. From Eq. (S34) and using the

eigenvalue equation Fθ|E in
j 〉 = Λj |E in

j 〉, Eq. (S33) becomes

J(n)(θ) = 4

∑N
j=1 |γj |2Λn+1

j∑N
j=1 |γj |2Λnj

. (S35)

This expression can also be written in the following form:

J(n)(θ) = 4Λmax ×
∑N

j=1 |γj |2(Λj/Λmax)n+1∑N
j=1 |γj |2(Λj/Λmax)n

, (S36)

where Λmax is the largest eigenvalue of Fθ. Assuming that |γj |2 6= 0 for the associated
eigenstate, we end up with

lim
n→+∞

J(n) = 4Λmax . (S37)

Thus, performing time-reversal of a perturbation using phase conjugation allows one to
iteratively identify the maximum information state relative to the perturbation, provided
that the scattering matrix describing the medium is a square matrix satisfying the reci-
procity condition ST = S, and that the overlap between the initial state and the maximum
information state is not equal to zero.

It clearly appears that the eigenstates of Fθ constitute a relevant basis to analyze this
iterative procedure. Indeed, the number of iterations needed for the procedure to converge
depends on both the values of γj and the eigenvalue spectrum of Fθ, according to Eq. (S35).
In order to illustrate this feature, we consider the operator fϕ = (∂ϕr)

†∂ϕr measured by
shifting the phase ϕ induced by the cross-shaped object. We numerically generate 10 000
random initial states and we use Eq. (S35) to calculate the ratio J(n)(ϕ)/Jmax(ϕ), where
Jmax(ϕ) is the Fisher information associated with the maximum information state. After
the first iteration, the median value of the ratio J(n)(ϕ)/Jmax(ϕ) is equal to 0.42 (Fig. S1),
and we observe that 4 iterations are generally required to identify a state that reaches 90% of
the optimal Fisher information. Moreover, some initial states show a small overlap with the
maximum information state; for such states, the ratio J(n)(ϕ)/Jmax(ϕ) after 10 iterations
is close to 0.6, corresponding to the second largest eigenvalue of fϕ.
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Supplementary Figure S1 | Fisher information maximization using time-reversed
adapted perturbation. Fisher information associated with light states identified us-
ing time-reversed adapted perturbation for 10 000 random initial states, normalized by the
Fisher information of the maximum information state. A horizontal line goes through each
box at the median value, edges of the boxes represent lower and upper quartiles, and whiskers
represent minimum and maximum values. The box and whiskers for 0 iterations appear as
a single horizontal line; indeed, random initial states generate a Fisher information that is
much smaller than the maximum information state. The solid red line represents the Fisher
information for the largest eigenvalue of fϕ, and the dashed red lines represent the Fisher
information for the second, third, fourth and fifth largest eigenvalues.

S1.6 – Multiple parameter estimations

When several parameters θ = (θ1, . . . , θp)
T need to be simultaneously estimated, the Cramér-

Rao inequality reads1

Var
(
θ̂i

)
≥
[
J −1(θ)

]
ii
, (S38)

where θ̂i is any unbiased estimator of θi, Var denotes the variance operator and J (θ) is now
a p× p Fisher information matrix defined as follows:

[J (θ)]ij = E
(
[∂θi ln p(X; θ)][∂θj ln p(X; θ)]

)
. (S39)

Diagonal elements of the Fisher information matrix can then be interpreted as the amount
of information relevant to the estimation of each parameter taken individually, while off-
diagonal elements describe the influence of possible correlations between estimated values
of different parameters.

For scattering measurements performed with the optimal homodyne detection scheme,
the trace of the Fisher information matrix is expressed by

Tr [J (θ)] = 4〈Ein|
p∑
i=1

Fθi |E
in〉 , (S40)

where Fθi = (∂θiS)†∂θiS is the Fisher information operator associated with the i-th param-
eter. Thus, the incident state that maximizes the trace of the Fisher information matrix

8



is found by calculating the eigenstates of the operator
∑

i Fθi and by choosing the one as-
sociated with the largest eigenvalue. Whenever the Fisher information matrix is diagonal,
we can write [J −1(θ)]ii = [J (θ)]−1

ii . In this case, maximizing the trace of the Fisher in-
formation matrix improves the measurement precision for all parameters simultaneously.
Furthermore, any weighted sum of diagonal elements of the Fisher information matrix can
be maximized using the same approach, a feature which could be useful to improve the
precision for specific parameters of interest. In contrast, if the Fisher information matrix is
not diagonal, we can only write [J −1(θ)]ii ≥ [J (θ)]−1

ii . It is then still needed to maximize
the value of diagonal elements but it is also important to minimize the value of off-diagonal
elements, thus requiring a different optimization strategy. If an iterative algorithm is used
for this purpose, maximizing the trace of the Fisher information matrix can yield a good
initial guess for the algorithm.

Supplementary Section S2 – Fisher information in the experi-
ments

In this section, we give the expression of the Fisher information for our optical setup and we
provide the expression of the minimum variance unbiased estimator used in the experiments.

S2.1 – Expression of the Fisher information in the experiments

In our proof-of-principle experiments, the reference beam is not optimally shaped but con-
sists of a tilted plane wave. In this case, the Fisher information is obtained by averaging
Eq. (S5) over the phase angle of the reference beam:

J (θ) =
2

π

N∑
k=1

∫ 2π

0
dφ
[
(∂θQ

out
k ) cosφ+ (∂θP

out
k ) sinφ

]2
. (S41)

We obtain the following simplified expression:

J (θ) = 2

N∑
k=1

|∂θEout
k |2 . (S42)

Note that this expression is identical to the expression of the optimal Fisher information
given in Eq. (S6), except for a factor of two. Hence, the incoming state which maximizes
Eq. (S42) also maximizes Eq. (S6).

In the experiments, we must also take into account two additional considerations. First,
the value of the N = 2465 sampling points are actually estimated from Ncam = 53 044
statistically independent camera pixels (oversampling is required in off-axis holography).
The oversampling ratio β = Ncam/N must therefore be included as a prefactor in Eq. (S42).
Moreover, while we measured the reflection matrix without any neutral density filter, we
consistently use the strongest neutral density filter ND6 (fractional transmittance T =
0.83 × 10−6) to compute all values of the Fisher information. Therefore, the expression of
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the Fisher information relevant to our experiments is

J (θ) =
T
σ2
〈Ein|(∂θr)†∂θr|Ein〉 , (S43)

where we noted σ2 = 1/(2β) in order to highlight that this expression can be identified
as the Fisher information for a random vector composed of N complex random variables
whose real and imaginary parts are independent normally distributed random variables with
variance σ2. The precision limit σcrb, which bounds the standard deviation of any estimator
of θ in our experiments, is then expressed from Eq. (S43) by σcrb = J −1/2.

We can verify that the measured field quadratures follow a Gaussian distribution when
the neutral density filter ND6 is in the signal path. To this end, we illuminate the medium
with the optimal incident state relative to the estimation of ϕ and we perform 100 successive
measurements of the outgoing field. We then compute the p-value for each sampling point
according to the Shapiro-Wilk test. The uniform distribution of p-value (Fig. S2a) confirms
that the measured field quadratures follow a Gaussian distribution. We also construct
the histogram of the sample variance (Fig. S2b), with a mean value of 0.0243ADU. This
value is in good agreement with the theoretical value given by 1/(2β) = 0.0232 ADU.
We consistently choose the mean value experimentally determined (σ2 = 0.0243 ADU) to
calculate the Fisher information in Eq. (S43).

Supplementary Figure S2 | Statistics of the field quadratures. a, P-value distribu-
tion for the 2465 sampling points. The p-value for each point is calculated using Shapiro-
Wilk test statistics from 100 different realization of the random noise. b, Distribution of
the sample variance for the 2465 sampling points.

S2.2 – Minimum variance unbiased estimator in the experiments

For small variations of θ around θ0, measured data can be described by the following linear
model:

Zk = Eout
k + (∂θE

out
k )(θ − θ0) +Wk , (S44)

where Zk represents here the complex field retrieved from the measured data using off-axis
holography and evaluated at the k-th sampling point, where Eout

k and ∂θEout
k are evaluated

at θ0, and whereWk are N independent complex random variables whose real and imaginary
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parts are independent normally distributed random variables with mean zero and variance
σ2. For this linear model, the minimum variance unbiased estimator reads1

θ̂(Z)− θ0 =
Re
[
〈∂θEout|Z〉 − 〈∂θEout|Eout〉

]
〈∂θEout|∂θEout〉

. (S45)

All estimations presented in the manuscript are performed from data measured with the neu-
tral density filter ND6 (characterized by a fractional transmittance T ) placed in the signal
optical path. Moreover, due to measurement noise during reflection matrix measurements,
the intensity and the Fisher information predicted from the knowledge of the reflection ma-
trix differ from direct measurements by a factor ηi and ηf, respectively (see Supplementary
Information S3). The estimator of θ associated with our experimental setup is thus obtained
from Eq. (S45) by taking |Eout〉 = (ηiT )1/2 r|Ẽin〉 and |∂θEout〉 = (ηfT )1/2 ∂θr|Ẽin〉. We
obtain the following expression:

θ̂(Z)− θ0 =
Re
[
(T ηf)−1/2〈Ẽin|(∂θr)†|Z〉 − (ηi/ηf)1/2〈Ẽin|(∂θr)†r|Ẽin〉

]
〈Ẽin| (∂θr)† ∂θr|Ẽin〉

. (S46)

Evaluating this estimator using measured data Z directly yields the estimates shown in the
manuscript. Importantly, all experimental parameters involved in this expression (i.e. T , ηi
and ηf) are characterized using independent measurements. Note that, whereas estimates
shown in the manuscript are almost unbiased, small biases often appear when applying
Eq. (S46) to experimental data. Such biases, which are usually smaller than 2σcrb, can
be explained by the influence of measurement noise in the reflection matrices and by an
imperfect correction of the global phase variations induced by thermal instabilities of the
setup.

Supplementary Section S3 – Characterization of the outgoing
field and its derivative

In this section, we show that reflection matrix measurements allow to faithfully predict the
outgoing field and its derivatives with respect to the phase and to the position of hidden
objects, and we characterize the correlation between the outgoing field distribution and its
derivative.

S3.1 – Predicting the outgoing field

In general, illuminating the scattering medium with an arbitrary state |Ein〉 requires am-
plitude and phase modulation of the incident field state. However, in the experiments, only
the phase of the field can be modulated by the input SLM. We must therefore determine the
expression of the phase-only modulated state |Ẽin〉 that is experimentally used to illuminate
the medium instead of |Ein〉. Let us define the SLM pattern |Eslm〉 = M |Ein〉, where M
is a transformation matrix mapping incident states (expressed in a basis of plane waves) to
SLM patterns (expressed in a basis of SLM pixels). The phase-only modulated state can be
numerically approximated by |Ẽin〉 = argmin(‖|ẼSLM〉 −M |Ein〉‖, |Ein〉), where |Ẽslm〉 is
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the SLM pattern that has the same phase as |Eslm〉 but with uniform amplitude. Thus, pre-
dicted outgoing states are given by |Eout

ap 〉 = r|Ein〉 for an amplitude and phase modulation,
and by |Eout

po 〉 = r|Ẽin〉 for a phase-only modulation.

We can test this procedure by measuring the outgoing field when the medium is illu-
minated using optimal incident states. This characterization is experimentally performed
by averaging the outgoing field over 10 measurements, with the neutral density filter ND2
placed in the signal path (measured fractional transmittance T ′ = 0.76 × 10−2) to avoid
saturation of the camera. The complex correlation coefficients between measured and pre-
dicted fields are 0.96− 0.21 i (for the maximum information state relative to the estimation
of the phase shift of the cross-shaped object) and 0.95 + 0.06 i (for the maximum informa-
tion state relative to the estimation of the lateral shift of the circular object). These values
show that we can correctly predict the outgoing states from the measured reflection matrix.
Comparing the spatial distributions of the measured intensity to the predicted ones, we can
see that these distributions are indeed very similar (Fig. S3). However, due to the presence
of noise in reflection matrix measurements, we observe that the total measured intensity is
lower by a factor of the order of ηi ' 0.80 when compared to the predicted intensity.

Supplementary Figure S3 | Predicted and measured intensity distributions for
maximum information states. a, b, Predicted spatial distribution of the normalized
intensity for amplitude and phase (AP) modulation and phase-only (PO) modulation, when
the observable parameter is the phase shift of the cross-shaped object. c, Measured spa-
tial distribution of the normalized intensity. d–f Analogous to a–c when the observable
parameter is the lateral displacement of the circular object.
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S3.2 – Predicting the derivative of the outgoing field

In order to faithfully assess the Fisher information in the experiments, we must ensure that
∂θr is correctly estimated using the finite-difference scheme ∂θr ' [r(θ0 + ∆θ) − r(θ0 −
∆θ)]/(2∆θ). To this end, the change in the measured outgoing states generated by pa-
rameter variations of ±∆θ must be larger than the level of noise in the measurements. In
Fig. S4a, we consider the case in which the observable of interest is the phase shift induced
by the cross-shape object, and we show the distribution of the estimated Fisher information
for each incident plane wave used to generate the reflection matrix (blue histogram). For
comparison purpose, we show the distribution of noise estimates (red histogram), obtained
for each plane wave by taking two identical measurements of the outgoing state for ϕ = ϕ0.
We clearly observe that the signal is significantly larger than the noise, with a signal mean
value of 0.41 rad−2 and a noise mean value of 0.13 rad−2. Similarly, in Fig. S4b, we consider
the case in which the observable of interest is the lateral displacement of the circular object,
and we show the distribution of the estimated Fisher information for each incident plane
wave used to generate the reflection matrix along with the distribution of noise estimates.
In this case, the signal is also larger than the noise, with a signal mean value of 0.0027 µm−2

and a noise mean value of 0.0014 µm−2.

Supplementary Figure S4 | Histograms of Fisher information and measurement
noise. a, Histogram of Fisher information for the 2437 plane waves used to construct
the reflection matrix, along with the histogram of associated measurement noise, when the
observable parameter is the phase shift of the cross-shaped object. b, Analogous to a when
the observable parameter is the lateral displacement of the circular object.

We can verify that this signal-to-noise ratio is sufficient to faithfully estimate ∂ϕr and
∂xr by measuring the derivative of the outgoing field when the optimal incident state is used
to illuminate the medium, and by comparing it to the derivative of the field predicted using
the derivative of the reflection matrix. This characterization is experimentally performed
by averaging the derivative of the outgoing field over 10 measurements, with ND2 in the
signal path to avoid saturation of the camera. The complex correlation coefficients between
measured and predicted derivative of the field are 0.97−0.22 i (for the maximum information
state relative to the estimation of the phase shift of the cross-shaped object) and 0.99+0.00 i
(for the maximum information state relative to the estimation of the lateral shift of the
circular object). These values show that we can correctly predict the derivative of the
outgoing field from reflection matrix measurements. Comparing the spatial distributions of
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the measured Fisher information per unit area to the predicted ones, we can see that these
distributions are very similar (Fig. S5). However, the total measured Fisher information
is lower by a factor of the order of ηf ' 0.75 when compared to the predicted Fisher
information. This difference is largely explained by the observed difference in the predicted
and measured outgoing intensity (for which a factor ηi ' 0.80 was measured).

Supplementary Figure S5 | Predicted and measured distributions of the Fisher
information per unit area for maximum information states. a, b, Predicted spatial
distribution of the normalized Fisher information per unit area for amplitude and phase
(AP) modulation and phase-only (PO) modulation, when the observable parameter is the
phase shift of the cross-shaped object. c, Measured spatial distribution of the normalized
Fisher information per unit area. d–f Analogous to a–c when the observable parameter is
the lateral displacement of the circular object.

S3.3 – Correlation between the outgoing field state and its derivative

In order to characterize the correlation between |Eout〉 and |∂θEout〉, we calculate the fol-
lowing complex correlation coefficient:

Cθ =
〈Eout|∂θEout〉
‖Eout‖ · ‖∂θEout‖

. (S47)

This correlation coefficient is a relevant quantify to assess whether the Fisher information is
enclosed in variations of the global phase of the outgoing state as expected for a unitary S-
matrix (Cθ ' ±i), or whether it rather enclosed in the state’s intensity variations (Cθ ' ±1)
or speckle decorrelation (Cθ ' 0).

14



We first calculate the correlation coefficient for each plane wave used to construct the
reflection matrix, when the observable parameter is the phase shift ϕ induced by the cross-
shaped object (Fig. S6a) and when it is the lateral position x of the circular object (Fig. S6b).
On average, the measure correlation coefficients are equal to Cϕ = −0.01 + 0.16 i and Cx =
0.00 + 0.01 i, respectively. For the maximum information states, the measured correlation
coefficients reach Cϕ = 0.01 + 0.96 i and Cx = 0.18 + 0.74 i, respectively. Thus, in both
experiments, we observe that the average correlation coefficient for plane wave is close to
zero, while the correlation coefficient for the maximum information state is close to the
imaginary unit. This observation is likely to reflect the invariance property of maximum
information states in the limit of a unitary S-matrix, in the same way as the principal
modes of a multimode fiber are invariant (to first order) in their output profile with respect
to parameter variations except for a global phase shift14–16. However, in our case, the
measured reflection matrices are not unitary, thereby explaining the deviations from this
property that are observed in the experiments.

Supplementary Figure S6 | Correlation coefficient between the outgoing field
and its derivative. a, Complex correlation coefficient between the outgoing field and its
derivative when the observable parameter is the phase shift induced by the cross-shaped
object. Black points represent values of the complex correlation coefficient for the 2437
plane waves used to construct the reflection matrix, and the red point represent the value of
the complex correlation coefficient for the optimal incident state. b, Analogous to a when
the observable parameter is the lateral displacement of the circular object.
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