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S1. DERIVATION OF THE OPTIMAL
CRAMÉR-RAO BOUND FOR ABSORPTION

ESTIMATIONS

Instead of estimating the set of parameters φ =
(φ1, . . . , φp), one may want to estimate the set of pa-
rameters n = (n1, . . . , np) in order to characterize an ab-
sorptive sample. In the same way that we obtained the
Fisher information matrix J (φ) for phase estimations,
we now consider the Fisher information matrix J (n) for
absorption measurements. In the shot-noise limit and as-
suming that the values measured by all camera pixels are
statistically independent, we obtain
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In order to express the derivative of the intensity Idetk
with respect to φj , we can use the following chain rule:
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This yields
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The elements of the Fisher information matrix can thus
be explicitly expressed as follows:
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Writing Edet
k = |Edet

k |eiαk , the diagonal elements of the
Fisher information matrix are expressed by:

[J (n)]jj =
1

nj

d∑
k=1

|hkj |2 cos2(φj + βkj − αk) . (S5)

Considering that cos2(φj+βkj−αk) ≤ 1 and
∑
k |hkj |2 ≤

1, we have the following inequality:

[J (φ)]jj ≤
1

nj
, (S6)

which is saturated if H is unitary and if the following
phase-matching condition is satisfied:

φj + βkj − αk = mπ , (S7)

where m can be any integer. This must hold for all k, j
for which njhkj 6= 0. By comparing Eq. (S7) to the cor-
responding one for phase estimation in the main text, it
is clear that the condition required to perform optimal
phase estimations is complementary to the condition re-
quired to perform optimal absorption estimations.

To summarize, we can write the following chain of in-
equalities for absorption estimations:

Var(n̂j) ≥ [J−1(n)]jj ≥ [J (n)]−1jj ≥ nj , (S8)

where the optimal bound simply corresponds to the vari-
ance of shot-noise limited measurements in a direct imag-
ing configuration of an absorptive sample with known
phase contrast.

Note that we have treated phase and absorption esti-
mations separately. In general, the number of unknowns
cannot exceed the number of measurements for the Fisher
information matrix to be well-conditioned. Precisely de-
termining both phase and absorption entails estimating
2p parameters, and the Fisher information matrix can be
well-conditioned only if the number d of measurements
satisfies d ≥ 2p. This can be achieved either in a single
shot (i.e. in off-axis interferometry) or with multiple ac-
quisitions (i.e. in phase shifting interferometry), as will
be discussed in the following section.
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S2. CRAMÉR-RAO BOUND FOR
PHASE-SHIFTING AND OFF-AXIS

INTERFEROMETRY

We now study the case of a simple phase-shifting inter-
ferometric scheme in which the object field is successively
interfered with N ≥ 3 external reference plane waves that
are phase-shifted by 2uπ/N , where u = 0, . . . , N − 1.
We assume an ideal detection scheme so that H is the
identity matrix of size p, resulting in a diagonal Fisher
information matrix. We also suppose that the intensity
of the reference wave is high everywhere in the field of
view, so that αk ' arg(Eref

k ). Then, considering that
the N successive measurements are statistically indepen-
dent, we can add the Fisher information associated with
each measurement. Taking an integration time of ∆t/N
for each measurement to keep the total photon number
incident on the sample constant, we can use Eq. (8) of
the main text to calculate the diagonal elements of the
Fisher information matrix, which reads

[J (φ)]jj =
4nj
N

N−1∑
u=0

sin2(φj + 2uπ/N) . (S9)

Making use of trigonometric identities, we readily obtain

[J (φ)]jj = 2nj −
nj
N
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]
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where c.c. denotes the complex conjugate of the preceding
term. Computing the geometric series, this yields

[J (φ)]jj = 2nj −
nj
N
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Since N ≥ 3, we finally obtain

[J (φ)]jj = 2nj . (S12)

The resulting Cramér-Rao bound is 1/(2nj), which is
two times worse than the optimal Cramér-Rao bound
for phase estimations. Note, however, that the optimal
scheme for phase estimations yields no absorption infor-
mation. In contrast, the diagonal elements of the Fisher
information matrix relative to absorption estimations is
non-zero for the phase-shifting interferometric scheme.
Starting from Eq. (S5), it can be easily shown that

[J (n)]jj =
1

2nj
. (S13)

The resulting Cramér-Rao bound is then 2nj , which is
two times larger than the optimal Cramér-Rao bound
for absorption estimations.

Similar results can also be obtained for an off-axis in-
terferometric imaging scheme. In such scheme, the ob-
ject field is interfered with a tilted plane wave, such that
the period of the resulting interference pattern is smaller

than the smallest features encoded in the object wave.
Due to this oversampling, each phase value φj can be
estimated from values measured by q camera pixels as-
sociated with different values of αk ranging from 0 to
2π. This yields an averaging effect similar to what was
exposed earlier in the case of the phase-shifting inter-
ferometric scheme, resulting in a Cramér-Rao bound of
1/(2nj) for the estimation of φj (phase estimations) and
of 2nj for the estimation of nj (absorption estimations).

S3. OPTIMAL PHASE MICROSCOPES WITH
INCOMPLETE KNOWLEDGE OF PHASE

OBJECTS

Optimal detection schemes (with or without external
reference) require prior knowledge of the entire sample
in order to effectively turn a strongly-contrasted object
into a weakly-contrasted object. If the prior knowledge
is incomplete, the phase-matching condition will then
only be approximately satisfied. To determine the in-
fluence of such incomplete knowledge, we consider an
optimal detection scheme with a uniform intensity dis-
tribution (nj = 1 in the whole field of fiew), with a

high-intensity reference beam (|Eref
k |2/|E

obj
k |2 = 100 in

the entire field of view) and with a phase such that
arg(Eref

k ) = π/2 + φk + Wk, where Wk follows a cen-
tered Gaussian distribution of variance σ2

g . We then vary
the standard deviation of the noise from 0 to 1 rad and,
for each value of σg, we plot the histogram of the CRB
obtained within the field of view. As can be seen in
Fig. S1, close to optimal estimations can be performed
for σg < π/8, with only a few occurrences characterized
by a sub-optimal CRB. Note that it is this regime in
which PCM works efficiently; spatial light interference

FIG. S1. Stack of histograms of CRB as a function of the
standard deviation of a Gaussian uncertainty regarding the
true phase distribution in the object plane. These calculations
were performed for a 128×128 phase object and assuming an
ideal detection setup with a high-intensity optimally-shaped
reference beam. No occurrences were observed in the black
areas of the figure.
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microscopy (SLIM) is then a potential option as an ini-
tialization before using an optimal scheme such as Low-
phi to perform dynamic precise phase estimations.

S4. INFORMATION LOSS AND SINGULAR
FISHER INFORMATION MATRICES

We now discuss important effects that arise when we
consider that the finite numerical aperture (NA) of the
imaging system blocks all high spatial frequencies in the
image plane, and that the finite size of the phase mask
prevents phase estimations for low spatial frequencies
(only absorption estimations could be performed for such
frequencies). Taking into account these two effects, the
Fisher information matrix of phase microscopes is nec-
essarily singular, and the associated Cramér-Rao bound
therefore cannot be calculated without further analysis.
In order to understand why a direct inversion of the
Fisher information matrix is not possible, it is relevant
to use the Fourier basis for representing the parameters
φ. Thus, we consider the estimation of a new set of pa-
rameters ξ = Wφ, where W is the (unitary) discrete
Fourier transform (DFT) matrix which is used to ap-
proximate the Fourier transform operator. The Fisher
information matrix for the parameters ξ, calculated as
J (ξ) = WJ (φ)W †, has zeros for both low and high spa-
tial frequencies, resulting in a singular Fisher information
matrix.

As an example, we study the PCM configuration de-
scribed in the manuscript but with a finite NA and a
finite phase mask. To this end, we suppose that the area
of a pixel in the detection plane is λ20/4 where λ0 is the
wavelength of the incident light, so that the field is sam-
pled at the Nyquist frequency. We further assume to
use an Olympus microscope objective with a numerical
aperture NA = 0.75 and a ×40 magnification, along with
a phase disc whose radius corresponds to the width of
a commonly-used Ph2 phase ring. The finite numerical
aperture of the microscope objective effectively blocks
all spatial frequencies k/k0 > 0.75 where k is the magni-
tude of the transverse component of the wavevector and
k0 = 2π/λ0. Furthermore, the effect of the phase ring is
to shift all spatial frequencies k/k0 < 0.07 by γ = π/2.
The resulting distribution for the diagonal elements of
J (ξ) is shown in Fig. S2a. Note that a zero in a di-
agonal element of J (ξ) implies that a whole row and a
whole column of J (ξ) is zero. This demonstrates that
the Fisher information is suppressed for high spatial fre-
quencies (due to the finite NA of the detection system) as
well as for low spatial frequencies (due to the finite size
of the phase mask). In the limit of an idealized setting
with infinite NA and with a phase mask assumed to be

infinitely small, this has the well-known consequence that
only a uniform global phase factor cannot be determined
from the intensity distribution in the camera plane, as
discussed in the manuscript.

However, in order to continue the analysis, we can as-
sume that the value of ξj associated with the missing
spatial frequencies are provided as a priori information,
or that it is known that the object does not feature such
frequencies. In this case, we can reduce the dimensions
of J (ξ) and W by removing the lines and columns asso-
ciated with these parameters. This procedure results in
the construction of the truncated matrices J̃ (ξ) and W̃ ,

which satisfy J̃ (ξ) = W̃J (φ)W̃ †. The resulting Fisher

information matrix J̃ (ξ) is now invertible, which allows
us to write the following Cramér-Rao inequality

Var(φ̂j) ≥
[
W̃ †J̃−1(ξ)W̃

]
jj
. (S14)

Note that, due to the addition of a priori information,
the Cramér-Rao bound can be smaller than the funda-
mental limit expressed by 1/(4nj) in certain regions of
the sample.

In the numerical results shown in Fig. 4b of the
manuscript, the NA was assumed to be infinite, and the
phase disc was assumed to be one pixel in size, so the
Fisher information matrix had to be truncated by one
column and one line before inversion. It is interesting
to compare these results to the more realistic case of a
finite size phase-disc and limited NA. Fig. S2b shows the
Cramér-Rao bound obtained by considering the Fisher
information matrix whose diagonal elements are shown
in Fig. S2a, and by truncating it to remove all zero spa-
tial frequencies. Remarkably, the larger phase mask and
the underlying assumption of a priori knowledge about
these frequencies lead to a reduced average Cramér-Rao
bound. Moreover, we can recognize a Fourier-filtered ver-
sion of the cameraman on the map in Fig. S2b, which
confirms that low and high spatial frequencies are sup-
pressed from the measurements.

FIG. S2. (a) Diagonal elements of the Fisher information
matrix J (ξ), expressed in the Fourier basis. (b) Resulting
Cramér-Rao bound obtained by truncating J (ξ) for low and
high spatial frequencies.


