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I. ELECTRODYNAMICS SIMULATIONS BASED
ON THE COUPLED DIPOLE METHOD

In this section, we describe the numerical approach
used to compute the average value of the intensity in the
image plane. The model system is a set of Ns infinite
cylinders, confined within an area of transverse dimen-
sion Lz = 10λ and with a larger longitudinal dimension
(Lx = 50λ) in order to minimize finite-size effects. A
small exclusion radius is defined around the scatterers
to prevent them from overlapping. The system is illumi-
nated by an incident field polarized along the longitudinal
axis of the cylinders. The scalar wave equation is then
solved using a numerical approach based on the coupled
dipole method [1], which is an exact formulation in the
limit of small cross-sections for the scatterers. Using this
model, the field E(rj) at the position of the j-th scatterer
is expressed by

E(rj) = E0(rj) + k2
Ns−1∑
n=0
n 6=j

G0(rj , rn)αnE(rn) , (S1)

where rn is the position of the n-th scatterer, E0(rn) is
the incident field at this position and αn is the polariz-
ability of the scatterer. For 2D systems, the free-space
Green function is

G0(r, r′) =
i

4
H

(1)
0 (k|r− r′|) , (S2)

whereH(1)
0 is the Hankel function of the first kind of order

0. Equation (S1) defines a set of Ns linear equations that
are solved using standard computational routines. The
field at any position r can then be calculated using

E(r) = E0(r) + k2
Ns−1∑
n=0

G0(r, rn)αnE(rn) . (S3)

Finally, the field in the camera plane is calculated by ap-
plying a low-pass filter to the field evaluated at z = Lz.
Low-pass filtering of the field is performed by convolving
it with the product of the cardinal sine function and a
Blackman window. In this way, we filter the frequencies
higher than Kmax = kNA with a transition bandwidth

that we set to be on the order of Kmax/10. The numer-
ical aperture of the detection objective is set to NA = 1
in the simulations. Assuming that the imaging system
has a unitary magnification and choosing a small pixel
dimension (∆x = λ/10), the average value for the signal
measured by the i-th pixel of the camera simply reads
Ii ' ∆x|Ei|2 where Ei is the value of the filtered field at
the i-th sampling point.

II. MINIMUM VARIANCE UNBIASED
ESTIMATOR FOR THE LINEAR MODEL

In this section, we show that we can obtain an ex-
plicit expression for an unbiased estimator that reaches
the CRLB, in the limit of small parameter variations and
for a large number of detected photons. Let us assume
that the measured data X can be described by a linear
model such as

X = I + Jd + w , (S4)

where we introduced the intensity vector I =
(I1(θ0), . . . , IN (θ0))T, the displacement vector d =
(∆θ1, . . . ,∆θK)T, the noise vector w and the Jacobian
matrix J expressed by

J =


∂I1/∂θ1 ∂I1/∂θ2 · · · ∂I1/∂θK
∂I2/∂θ1 ∂I2/∂θ2 · · · ∂I2/∂θK

...
...

. . .
...

∂IN/∂θ1 ∂IN/∂θ2 · · · ∂IN/∂θK

 . (S5)

We assume that the intensity vector I and the Jacobian
matrix J are known. In practice, this can be achieved
with a calibration step, which consists of measuring the
intensity and its derivative at θ0. Moreover, we assume
that the noise vector w follows a normal distribution
N (0,C), where C is the covariance matrix. The nor-
mal distribution is indeed a good approximation of the
Poisson distribution for a large number of detected pho-
tons. Only diagonal terms of the covariance matrix are
non-zero, as events detected by different pixels are sta-
tistically independent. Thus, the covariance matrix is
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expressed by

C =


I1(θ0) 0 · · · 0

0 I2(θ0) · · · 0
...

...
. . .

...
0 0 · · · IN (θ0)

 . (S6)

Under these assumptions, the minimum variance unbi-
ased estimator for d reaches the Cramér-Rao bound [2],
and is given by

d̂ =
(
JTC−1J

)−1
JTC−1 (X− I) . (S7)

This can be written in the following form:

d̂ = F−1(θ0)

N∑
i=1

∇θIi

[
Xi − Ii(θ0)

Ii(θ0)

]
, (S8)

where we introduced the Fisher information ma-
trix F(θ0) and the differential operator ∇θ =
(∂/∂θ1, . . . , ∂/∂θK)T. Finally, note that, since only max-
imum likelihood estimators can be unbiased and efficient,
then the estimator expressed by Eq. (S8) is necessarily
the maximum likelihood estimator.

III. INFLUENCE OF ERRORS ON THE
CONFIGURATION OF THE MEDIUM

In this section, we study the robustness of estimations
regarding random errors on the position of the dipoles
constituting the scattering environment. To this end,
we generate 1000 random configurations of the scatter-
ing environment, for three different optical thicknesses
(controlled by changing the number of scatterers in the
medium). For all calculations, we consider a wave-
length λ = 633 nm and an average incident intensity
I0 = 104 photons per µm. For each configuration, we de-
termine the optimized wavefront for the coordinate x0,
and we construct the estimator defined by Eq. (S8). We
then modify the position of all scatterers constituting the
scattering environment according to a Gaussian distribu-
tion of variance σ2

g, compute the transmitted intensity,
and add a random Poisson noise to this intensity. We
finally use these numerically-generated data to perform
estimations of x0 via the previously-constructed estima-
tor.

We show in Fig. S1 the (arithmetic) average standard
error on the estimates σest as a function of standard de-
viation of the structural noise σg in the single-scattering
regime (Lz/` = 0.80, dark blue points), in the moder-
ate multiple-scattering regime (Lz/` = 2.3, medium blue
points) as well as deeper in the multiple-scattering regime
(Lz/` = 6.5, light blue points). The influence of σg on
the average standard error on the estimates strongly de-
pends on the scattering strength of the environment. In-
deed, for the different cases numerically studied, adding

a structural noise with a standard error of 1 nm leads
to an average standard error on the estimates of 8.0 nm
(for Lz/` = 0.80), 15 nm (for Lz/` = 2.3) or 61 nm (for
Lz/` = 6.5).

FIG. S1. Average standard error on the estimates as a func-
tion of the standard derivation σg of the Gaussian noise ap-
plied to the dipoles constituting the scattering environment,
in the single-scattering regime (Lz/` = 0.80, top panel),
in the moderate multiple-scattering regime (Lz/` = 2.3,
middle panel) and deeper in the multiple-scattering regime
(Lz/` = 6.5, bottom panel). SN: shot noise, GSN: Gaussian
structural noise.

We can compare these values to the one obtained in the
shot-noise limit without structural noise (σg = 0). In the
case of optimized illumination, the average standard er-
ror is 3.5 nm (for Lz/` = 0.80), 3.7 nm (for Lz/` = 2.3),
and 5.4 nm (for Lz/` = 6.5). In contrast, plane-wave il-
luminations leads to an average standard error of 39 nm
(for Lz/` = 0.80), 39 nm (for Lz/` = 2.3) and 55 nm
(for Lz/` = 6.5). Thus, in the single-scattering regime
and in the moderate multiple-scattering regime, opti-
mized illumination with a structural noise of 1 nm leads
to a smaller error than plane-wave illumination with no
structural noise. This demonstrate that, with a prior
knowledge of the order of 1 nm as available with cur-
rent lithography techniques [3], studying and optimiz-
ing the estimation precision in the shot-noise limit can
be directly relevant to the control of manufactured sam-
ples, in the single-scattering regime and in the moderate
multiple-scattering regime. Only when stronger multi-
ple scattering occurs (for Lz/` = 6.5), it appears that
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adding a structural noise of 1 nm degrades the standard
error on the estimates as much as using a plane wave in-
stead of an optimized wavefront. Nevertheless, it must be
noted that the estimation precision could be further im-
proved by building an estimator that takes into account
the incompleteness of the prior knowledge available on
the scattering environment, instead of using an estima-
tor based on incorrect prior knowledge.

IV. LOG-NORMAL DISTRIBUTION OF THE
CRAMÉR-RAO LOWER BOUND

In this section, we show that the CRLB follows a log-
normal distribution in the multiple-scattering regime. In-
deed, the probability density function followed by the
CRLB is correctly fitted by a log-normal distribution
for a wide range of scattering mean free path in the
multiple scattering regime (Fig. S2), thereby justifying
to calculate the geometric moments of the distributions
rather than the arithmetic ones. As mentioned in the
manuscript, decreasing k` leads to a broadening of the
density function, as well as an increase of the average
CRLB.

FIG. S2. Probability density functions followed by the CRLB
on the coordinate x0 (data points) and z0 (crosses) for differ-
ent values of the normalized mean free path. Solid lines are
log-normal fits to the data.

V. CONVERGENCE OF THE OPTIMIZATION
ALGORITHM

In this section, we show that the values of the opti-
mized CRLB weakly depend on the initial guess fed to
the optimization algorithm, and that the optimized field
distributions are strongly correlated. The algorithm that
we implemented is based on simulated annealing, which is
an adaptation of the Metropolis–Hastings algorithm for
approximating the global optimum of a cost function [4].
The initial guess for the phases of the Ne elements of the

SLM is randomly chosen, and the CRLB is iteratively
optimized using approximately 700×Ne function evalu-
ations. Furthermore, at the end of each optimization, we
systematically perform a final optimization step using a
quasi-Newton method.

In order to test the performance of the algorithm, we
use the configuration displayed in the manuscript, in the
diffusive regime (k` = 9.7). We successively minimize Cx
and Cz using 64 SLM elements, and we repeat this op-
timization procedure for 100 randomly generated initial
guesses of the input phases. We can assess the dispersion
of the resulting distributions (Fig. S3, upper panels) us-
ing the 1-sigma interval defined as [µg/σg ; µgσg] where
µg and σg are respectively the geometric mean and stan-
dard deviation of the distribution. The 1-sigma intervals
are [5.638 nm ; 5.646 nm] for the optimization of Cx and
[3.646 nm ; 3.651 nm] for the optimization of Cz. The dis-
persion of these distributions is small as compared to
the dispersion of the distribution observed when opti-
mizing the CRLB for each coordinate over 1000 different
random configurations, with a 1-sigma interval equal to
[3.412 nm ; 8.425 nm].

FIG. S3. Field correlation coefficient as a function of the
optimized value of the CRLB for x0 (left panel) and z0 (right
panel). The histograms show the distribution of the optimal
value found by the optimization algorithm for 100 different
initial guesses. For clarity, three outilers are not shown in the
distribution of Cz. The CRLB for these outliers is 3.678 nm,
3.709 nm and 3.738 nm.

In order to determine to what extent the optical modes
that are excited are the same for the different solutions,
we take the best solution or each coordinate as a reference
and we calculate the amplitude of the correlation coeffi-
cient for the optimized fields at z = Lz (Fig. S3, bottom
panels). The fields associated with the lowest CRLB are
highly correlated with the reference field, with a corre-
lation coefficient close to unity. Note that the step-like
behavior of the correlation coefficient reflects the possi-
bility for the algorithm to get trapped into a few local op-
tima. Nevertheless, we can see that all the solutions are
strongly correlated with the reference field, with a cor-
relation coefficient of at least 0.96. This indicates that,
regardless of the initial guess, the optimization algorithm
converges towards similar fields distributions.
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VI. INTENSITY ENHANCEMENT AT THE
TARGET POSITION

We showed in the manuscript that the CRLB scales
with ρ−1/2 when Cxz is minimized. This is a conse-
quence of the linear relation between the excitation in-
tensity at the target position and the LDOS. Indeed, the
intensity enhancement resulting from the minimization
of Cxz scales with the LDOS (Fig. S4), with a correla-
tion coefficient of 0.72 calculated on log-transformed vari-
ables. Furthermore, configurations with a high Cramér-
Rao bound are characterized by both a small intensity
and a low LDOS. Reversely, configurations with a low
CRLB are characterized by both a large intensity and
a high LDOS. This confirms that the reduction of the
CRLB observed for high LDOS is a consequence of the
enhancement of the excitation intensity at the target po-
sition.

FIG. S4. Enhancement of the excitation intensity at the po-
sition of the target as a function of the normalized LDOS for
k` = 9.7 when Cxz is minimized. The color of each point
represents the value of Cxz, and the black line is a fit to the
optimized data by a power law with an exponent equal to 1.

The observed relation between LDOS and intensity en-
hancement is in agreement with known results obtained
in the context of time-reversal experiments. Such experi-
ments, which provide a method to focus waves into com-
plex scattering media [5], can be decomposed as two-step

processes. During a recording step, a dipole source with
constant dipole moment ds is located inside a scatter-
ing system, and this source emits a field that is recorded
on a given surface by a far-field wavefront sensor. Dur-
ing a time-reversal step, a wavefront generator generates
on the same surface an incoming field that is the time-
reversed replica of the outgoing field previously recorded.
It is then known that the power emitted by the source is
proportional to the LDOS [6, 7], and that the intensity of
the time-reversed field at the source position is propor-
tional to the product of |ds|2 and ρ2 [8]. In order to relate
this latter result to our analysis, which is performed for
a constant number of photons injected in the scattering
system, we must re-normalized the dipole moment of the
source ds by the square root of the LDOS, such that the
source emits a constant power regardless of its position.
In that case, the resulting intensity at the target position
scales with the LDOS, in agreement with our numerical
results.

The linear relation between ρ and Iexc is strictly valid
whenever one has a full control over the input and out-
put modes of the field, which is a necessary condition to
achieve a complete time reversal of the field [8]. This is
not the case in our numerical simulations, which suggests
that the correlation between ρ and Iexc could be further
improved by performing a more complete control of input
and output modes in our simulations.
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