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I. DERIVATION OF EQ. (3)

Here we provide the detailed derivation of the main
result presented in Eq. (3) of the main text. Our starting
point is the decomposition of the generalized Wigner-
Smith (GWS) operator into the Green’s function G, the
coupling matrix to the leads V and the perturbation of
the potential function describing the scattering landscape
∆H [1],

Qθ =
2

∆θ
V †G†∆HGV , (S1)

where ∆θ quantifies the (infinitesimal) change in the pa-
rameter of interest. In order to find the average Fisher
information we need an expression for the trace of the
Fisher information operator, which, in turn, is propor-
tional to the trace of the squared GWS operator, i.e.,

TrFθ =
4

∆θ2
Tr
[
V †G†∆HGV V †G†∆HGV

]
,

=
4

∆θ2
Tr
{

[Im (G) ∆H]
2
}
, (S2)

where we have used the identity GV V †G† = − ImG
which is derived from SS† = 1 to arrive at the second
line of Eq. (S2).

We now turn our attention to a specific perturba-
tion, namely the shift of a sub-wavelength particle which
we characterize by ∆H = k2(εT − 1)[δ (r− rT −∆r) −
δ (r− rT )], where rT is the position of the target and ∆r
is an infinitesimal displacement. Putting this ∆H into
Eq. (S2) we get:

TrFx =
4k4 (εT − 1)

2

∆x2T

[
ImG

(
rT , rT ; k2

)2
− 2 ImG

(
rT , rT + ∆r; k2

)2
+ ImG

(
rT + ∆r, rT + ∆r; k2

)2]
. (S3)

In this equation we now identify the Green’s function G
with the so-called cross density of states (CDOS) [2, 3]
defined as

ρ12 (k) = −2k

π
Im G̃

(
r1, r2; k2

)
, (S4)

where G̃ (r1, r2) = ε (r1)
1/2

G (r1, r2) ε (r2)
1/2

denotes
the Green’s function suitably defined to calculate the
LDOS [4]. Plugging the CDOS into Eq. (S3) we then

get

TrFx =
2k2 (εT − 1)

2
π2

ε2T∆x2T

(
ρ211 − ρ212

)
, (S5)

〈TrFx〉 =
k4 (εT − 1)

2
π2

ε2T
〈ρ211〉, (S6)

where we used the observation that for short distances
the CDOS follows on average a simple law, irrespective
of the surrounding scattering environment [3] to arrive
at Eq. (S6),

〈ρ212〉 =J0 (k∆xT )
2 〈ρ11ρ22〉 (S7)

≈
(
1− k2∆x2T /2

)
〈ρ11ρ22〉, (S8)

where J0 is the zeroth-order Bessel function of the first
kind and we identify ρ11 ≡ ρ(rT , k).

In the case of measuring the dielectric constant, the
perturbation is given by ∆H = k2∆εT δ (r− rT ). Em-
ploying the same reasoning as the one presented above
in the case of position estimations, we obtain

〈TrFε〉 =
k2π2

ε2T
〈ρ211〉 . (S9)

This implies that the same invariance property as for Fx
also exists for measurements on the dielectric constant
(apart from a different prefactor).

II. DETAILED ANALYSIS OF LDOS SCALING

Here we provide the detailed argument, why the Fisher
information scales quadratically with the LDOS in the
unitary case, while it scales linearly for non-unitary scat-
tering matrices. We start by considering the derivative
of the scattering matrix with respect to some arbitrary
parameter:

∂θS = −2iV †G∆HGV/∆θ, (S10)

This gives us the following expression for the Fisher in-
formation operator:

Fθ =
4

∆θ2
V †G†∆HG†V V †G∆HGV (S11)

= − 4

∆θ2
V †G†∆H Im(G)∆HGV (S12)

=
2π

k∆θ2
V †G†∆Hε−1/2ρε−1/2∆HGV, (S13)
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where we use G†V V †G = − Im(G), which follows from
S†S = 1 to arrive at Eq. (S12). We reach Eq. (S13) by

first transforming G to G̃ and then converting it to the
CDOS (see Eq. (S4)). In the case of a point-like scatterer
and θ = εT , the perturbation is ∆H = k2∆εT δ (r− rT ),
which results in

I(εT , |u〉) =
2πk3

εT
|ψu(rT )|2ρ(rT ), (S14)

for the Fisher information of an arbitrary incidence wave-
front described by |u〉, with ψu being the resulting wave
function. This shows that the scaling I ∝ ρ2 comes from
two contributions: The intensity at the target [5] and the
unitarity of S. Both contribute a linear scaling of the QFI
with the LDOS and together they result in I ∝ ρ2. In
the case of a non-unitary S matrix only a linear scaling
of the QFI with the LDOS can therefore be observed [5].

The preceding result also readily solves another subtle
point. The eigenvalues of Fθ fulfill the following identity
in the unitary case , which follows from Fθ = Q2

θ:

Λ = 〈ψu|∆H|ψu〉2 /(4∆θ2), (S15)

showing that eigenvalues scale quadratically with the in-
tensity at the target while scaling linearly with the input
intensity (which is ∝ 〈u|u〉). Since the intensity at the
target is proportional to the input intensity, this seems
contradictory. Equation (S14) expresses the fact that dif-
ferent processes contribute to the intensity at the target
position: the first contribution comes from the LDOS
at the target position, while the second contribution is
connected to the input intensity.

III. MAXIMUM QFI

Routine access to light’s spatial degrees of freedom [6,
7] enables the generation of input fields that are spatially
optimized to maximize the Fisher information [8]. This
naturally leads to the question whether such a simple
law as Eq. (4) also exists for such spatially-optimized
input fields. In general, the QFI, first maximized over
input fields and then averaged over the maxima of many
disorder configurations, can be written as

〈Imax
θ 〉 = pθN〈Iavgθ 〉, (S16)

where pθ = 〈Λ1〉/〈TrFθ〉, with Λ1 being the largest eigen-
value of Fθ. Note that Eq. (S16) is a simple reformulation
of the identity 〈Imax

θ 〉 = 4〈Λ1〉, which follows directly
from Iθ = 4 〈u|Fθ|u〉. In order to assess the benefits of
maximizing the QFI over input fields, we need to deter-
mine the value of pθ, which depends upon the parameter
of interest.

On the one hand, for dielectric-constant estimations
of a point-like target, we can write the following iden-
tity: TrFε = TrQ2

ε = Tr2Qε (in line with what has been
shown in Ref. [9]). This implies that the rank of Fε is

FIG. S1. Average normalized magnitude of the two largest
eigenvalues, Λ1,Λ2, of Fx as a function of k`tr. In the ballistic
regime, the rank of Fx is equal to 2, with equal contributions
from the two non-zero eigenvalues (Λ1/Λ2 ≈ 1). This sym-
metry breaks with increased scattering strength, resulting in
an increased contribution from the largest eigenvalue in the
diffusive and localized regimes. The numerical data used in
this figure also underlies Figs. 2 and 3.

1 regardless of the scattering environment, resulting in
pε = 1. On the other hand, concerning estimations of
the target’s position, we can assess the value of px by
studying the momentum delivered on the target by the
probe field. Since, in the ballistic case, this momentum
transfer can be applied both in the positive and nega-
tive x-direction, we can expect a value of 2 for the rank
of Fx, resulting in px = 0.5. To confirm this reason-
ing, we use numerical simulations to calculate the ratios
Λ1/TrFx and Λ2/TrFx (involving the largest and second
largest eigenvalue Λ1,2 of Fθ) for different disorder con-
figurations and different scattering strength. In Fig. S1,
we can see that these two quantities are, indeed, equal
to 0.5 in the ballistic case, resulting in px = 0.5. How-
ever, adding a scattering environment around the particle
breaks the directional symmetry, such that the normal-
ized magnitudes of the two non-zero eigenvalues begin to
bifurcate. An increase of the scattering strength leads
to a stronger symmetry breaking; px thus increases with
the scattering strength until it approaches its maximal
value of px = 1 in the localized regime. The physical in-
tuition emerging from these results is that the increase in
QFI in the localized regime comes at the prize of reduced
micro-manipulation capabilities (only one direction can
be controlled).

IV. SPECKLE CORRELATIONS

A central aspect of Eq. (4) in the main manuscript is
that the average quantum Fisher information depends on
the C0–speckle correlation. We thus numerically stud-
ied the dependence of C0 = Var[ρ(rT , k)]/〈ρ(rT , k)〉2
upon the normalized transport mean free path k`tr. In
the diffusive regime (for k`tr of the order of 102), the
C0–speckle correlation is negligible (C0 ' 10−1), as
shown in Fig. S2a. To check the influence of near-field
effects around the target explicitly, we also performed nu-
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FIG. S2. (a) C0–speckle correlation as a function of the nor-
malised transport mean free path k`tr. Orange and green
dots are obtained in the regimes considered in Fig. 2b and
Fig. 2c of the manuscript, respectively. Purple dots are ob-
tained from additional numerical simulations performed at
the onset of the localized regime. Grey crosses are obtained
in all regimes, but without an exclusion square around the
target to capture near-field effects. The sharp increase of
C0 for small k`tr explains the increase of the average quan-
tum Fisher information observed in the localized regime (see
Fig. 2c of the manuscript). Each dot is obtained after aver-
aging over 100 random configurations. The vertical dashed
grey line marks the onset of Anderson localization (ξ = L).
(b) C0–speckle correlation over k`tr in 3D with an exclusion
volume (blue) and without one (orange). We calculate each
C0-value from a sample with 50 randomly chosen configura-
tions. The transport mean free path is estimated by using
`tr = L/(1− 〈T 〉), which is valid for 〈T 〉 & 0.5. (c) Sketch of
an example configuration in a waveguide of width W , length
L = W and height H ≈ 0.45W . The scatterers (grey spheres)
have hard walls, while the target (red sphere, not to scale) has
refractive index n = 1.44. The frequency is set such that 8
transverse electric modes propagate inside the system.

merical calculations without the exclusion square around
the target and find that there is only a ' 15% increase
in C0 in this diffusive regime. Both for the case with and
without this exclusion region, we find that for decreas-
ing k`tr, the value of C0 increases significantly – there is,
however, no discernible influence regarding the presence
or absence of an exclusion region. When approaching
the localized regime, the average quantum Fisher infor-
mation increases with the scattering strength of the en-
vironment, as predicted from Eq. (4) and observed in
Fig. 2c.

The effect of near-field interaction on the C0 speckle
correlations may be enhanced for 3D vector waves com-
pared to 2D scalar waves. We thus numerically study
the effect of the presence or absence of an exclusion vol-
ume on C0 for vector waves in 3D (see Fig. S2b and c).
Our model system is a multimode rectangular waveguide
with hard walls in x and y-direction (the waves can en-
ter and exit in z-direction). In this waveguide we place
spheres with hard walls of radius R = 0.05W . We com-
pute the LDOS at the center of a target scatterer with
radius R = 0.005W , which is located at the waveguide’s
center position (in all three dimensions). The exclusion
volume is a square of sidelength 0.4W , which extends
over the whole height of the waveguide. For systems
with k`tr & 102 (similar to the 2D diffusive case) we find
that C0 is still negligible both with and without an exclu-
sion volume. More significant deviations are observed for
k`tr � 102. This result can, however, be expected to de-
pend on the choice of the scattering scenarios employed
in the simulations: for point scatterers, or when reso-
nances are excited, C0 enhancements can be especially
pronounced [10].

V. CONNECTION TO QCRB

The QCRB is log-normal distributed, Σθ ∼
Lognorm(µ, σ2) [5]. This means that its inverse, which
is the Fisher information, is also log-normal distributed
with µ → −µ, i.e., Iθ ∼ Lognorm(−µ, σ2). This im-
plies that the average localization precision given by the
QCRB is related to the Fisher information by

〈Σavg
θ 〉 = e−2µ〈Iavgθ 〉, (S17)

where e−2µ = 24〈Tr2 Fθ〉/〈Iavgθ 〉4N2. In the case θ = xT
we get

e−2µ =
26N2

(
〈ρ411〉 − 2〈ρ211ρ212〉+ 〈ρ412〉

)
k20R16(εT − 1)4π4(1 + C0)4∆x4T

, (S18)

while for θ = εT we find

e−2µ =
24N2〈ρ(rT , k)4〉

k12ε4TR
16π4(1 + C0)4

. (S19)
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FIG. S3. Spatial distribution of the frequency-averaged LDOS 〈ρ〉 for the same geometry as depicted in (a) Fig. 2b (diffusive
regime) or (b)-(d) Fig. 2c (localized regime) of the main text. (a) Frequency scan for k ∈ [10.05, 14.95]π/W with a resolution
of 50 points. (b)-(d) Progressively finer frequency scan for k ∈ [10.025, 14.975]π/W with a resolution of (b) 50, (c) 95 and (d)
195 points (frequencies exactly at a transverse waveguide mode opening are discarded). (e) LDOS (normalized by the Weyl
law) averaged over frequency and transversal direction 〈ρ〉y plotted over the longitudinal coordinate x. The Weyl law is the
black dotted line. The blue line is the empty waveguide (the small decrease is due to boundary effects at the waveguide walls).
Orange denotes the diffusive regime, while the red and violet dashed lines are the localized regime with 50 and 95 frequency
points, respectively. The green line is the localized regime with 195 frequency points. Note that in the localized regime the
impenetrable scatterers were removed from the averaging procedure for the LDOS at each value of x.
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VI. UNIFORM DISTRIBUTION OF THE LDOS

An interesting result from the field of stochastic mo-
tion of classical particles is the insight that the aver-
age time that a particle undergoing a random walk in-
side a three-dimensional bounded system spends between
entering and exiting this system is just determined by
the ratio of the system’s volume over its surface (or the
area/circumference in 2D) [11]. This invariance of the av-
erage residence time or, equivalently “mean path length
invariance” has meanwhile been generalized to wave scat-
tering [12] and was observed in a corresponding experi-
ment [13, 14].

Based on the work by Blanco and Fournier [11] it was
later shown that the “mean path length” is not just an
invariant for the system’s entire scattering region, but,
in fact, also for each of the system’s sub-domains [15].
In other words, random walk trajectories entering a sys-
tem from an external boundary feature an average length
inside a chosen sub-domain of this system (like a region
around a designated target) that is invariant with respect
to the step size in the random walk process. For this aver-
age length it thus does not matter if the random walk tra-
jectories are straight lines altogether or very convoluted
paths. Apparently, when the step-size decreases the re-
duced likelihood for a part of the convoluted trajectories
to even reach the target region is exactly compensated
by the recurrent scattering of the remaining trajectories
that increases their dwell time inside the target domain.

Similar to the translation of the global “mean path
length invariance” to the domain of wave physics through
the global DOS, we translate here the “mean path length
invariance in every subdomain” to wave physics through
the local DOS, which is the invariant quantity of interest
here. Since the LDOS is derived from the full Green’s
function (see Eq. (S4)), it encompasses the full wave
behavior including recurrent scattering. The invariance
property of the LDOS manifests itself through the fact
that it is spatially homogeneous upon frequency averag-
ing. We confirm this with numerical simulations where
we sum over the intensities for all input states at each
point inside a single scattering geometry (see Fig. S3).
In the diffusive regime the average intensities are equally
distributed throughout the scattering region already for
the 50 frequencies considered in Fig. 2 of the main text
(apart from expected Friedel oscillations at the bound-
aries of the waveguide and the scattering centers). How-

ever, in the localized regime we need a finer resolution in
the frequency domain to achieve spatial homogeneity for
a single configuration (see the ever improving homogene-
ity in Fig. S3b-d). In the main text we compensate the
coarser frequency scan with a larger number of scattering
geometries.

VII. EFFECTS OF DISSIPATION

In order to analyze the effects of absorption we add a
globally uniform imaginary part, nI , to our system. This
global and uniform absorption can also be modeled by
shifting the frequency to ω+iα/2, where α = 2knI is the
absorption rate [16]. Under the assumption that α � ω
(corresponding to small dissipation) we can then expand
the scattering matrix into

Sa(ω + iα/2) ≈ S(ω)
[
1− α

2
Q(ω)

]
, (S20)

whereQ is the Wigner-Smith time-delay operator and the
subscript a denotes absorption (terms without it are eval-
uated at zero absorption). Plugging this into the Fisher
information operator up to first order results in

Fa,θ ≈ Fθ +
α

2

(
−{Q,Fθ}+ i

[
Qθ,

dQ

dθ

])
, (S21)

where [·, ·] ({·, ·}) denotes the (anti-)commutator. Taking
the trace results in the following simple expression since
the trace over any commutator is zero:

TrFa,θ ≈ TrFθ − αTr (QFθ) , (S22)

= TrFθ − α
∑
i

Λi 〈fi|Q|fi〉 , (S23)

where Λi and |fi〉 denote the eigenvalues and eigenvec-
tors of Fθ, respectively. This shows that the average QFI
in the presence of small dissipation is the QFI without
any absorption minus the weighted dwell-time of each
FI-operator eigenstate. This confirms the intuitive pic-
ture that the average QFI is affected most if the dwell-
time of states is large since those states are the ones that
are most affected by absorption and hence also their in-
teraction with the target. This analysis indirectly also
confirms that the influence of absorption is particularly
pronounced in the localized regime [17], since resonant
localized states have particularly long dwell-times [12].
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