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S1. OPTIMAL INCIDENT STATE

S1.1. General case

We define the incident field state |Ein〉 in the Hilbert space of all incident spatial modes. This state is characterized
by the coefficients {Ein

1 , . . . , E
in
M}, defined as the expectation values of the field operator inM incoming spatial modes.

After interacting with a scattering system, such an incident state produces an outgoing field state |Eout
i 〉, defined in the

Hilbert space of all outgoing spatial modes, and where i denotes the configuration of the scattering system interacting
with the field (i = 1 if H1 is true, and i = 2 if H2 is true). Outgoing field states are characterized by the coefficients
{Eout

i,1 , . . . , E
out
i,N}, defined as the expectation values of the field operator in N outgoing spatial modes. As a convention,

we express the fields in units of
√

(2~ω)/(ε0c0∆tA), where ~ is the reduced Planck constant, ω is the angular frequency
of the field, ε0 is the vacuum permittivity, c0 is the speed of light in vacuum, ∆t is the integration time and A is the
effective mode area [1]. In this way, the average numbers of photons in the incident and outgoing states are expressed
by 〈Ein|Ein〉 and 〈Eout|Eout〉, respectively. Using a scattering matrix formalism, incident and outgoing field states
are related by the following expression:

|Eout
i 〉 = Si|Ein〉, (S1)

where Si is the scattering matrix associated with the i-th hypothesis. In order to separately study the role of the total
number of photons n = 〈Ein|Ein〉 in the incident state and that of its spatial distribution, we define the normalized
incident state |E in〉 = n−1/2|Ein〉 so that 〈E in|E in〉 = 1. Writing Eout

i,k as a projection of |Eout
i 〉 on the state |k〉

associated with the k-th spatial mode, we obtain

Eout
i,k =

√
n 〈k|Si|E in〉. (S2)

The statistical distance d12 is defined as follows:

d212 =
1

n

N∑
k=1

∣∣Eout
2,k − Eout

1,k

∣∣2 . (S3)

Inserting Eq. (S2) into Eq. (S3) yields

d212 =

N∑
k=1

∣∣〈k|S2 − S1|E in〉
∣∣2 . (S4)

This expression can be expanded into

d212 =

N∑
k=1

〈E in|(S2 − S1)†|k〉〈k|S2 − S1|E in〉. (S5)

Using the completeness relation
∑
k |k〉〈k| = IN where IN is the N -dimensional identity matrix, we finally obtain

d212 = 〈E in|D12|E in〉, (S6)
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where we introduced the discrimination operator

D12 = (S2 − S1)
†

(S2 − S1). (S7)

This operator, which is Hermitian by construction, quantifies the statistical distance between two scattering matrices.
Its largest eigenvalue is equal to the maximum value of d212 that can be reached by shaping the incident field state
in its spatial degrees of freedom, and the eigenvector associated with this eigenvalue gives the spatial distribution of
this optimal incident field state.

S1.2. Unitary limit

For two scattering matrices that are unitary (S†i = S−1i ), the operator D12 is expressed by

D12 = 2IN − 2 Re(S†2S1), (S8)

where Re(S†2S1) denotes the Hermitian part of S†2S1. In this case, the eigenstates of D12 satisfy the eigenvalue
equation:

(S†2S1 + S†1S2)|E in〉 = (2− Λ)|E in〉, (S9)

where Λ ∈ R denotes an eigenvalue of D12. This equation can be identified as the eigenvalue equation for scattering
invariant modes [2]. Since both S1 and S2 are unitary, the eigenstates ofD12 satisfy the following generalized eigenvalue
equation:

S2|E in〉 = eiθS1|E in〉, (S10)

where θ ∈ R. Thus, when eigenstates of D12 propagate into each scattering system, the resulting outgoing field states
satisfy |Eout

2 〉 = eiθ|Eout
1 〉, which shows that both outgoing fields are identical except for a phase change of θ. This

phase change is related to the eigenvalue Λ by the following relation:

Λ = 2(1− cos θ). (S11)

The statistical distance d12 is minimum when θ = 2πm, m ∈ Z; in such case, d212 = 0 and the phase of the outgoing
state does not depend on the scattering system the wave propagates in. In contrast, the statistical distance d12 is
maximum when θ = π + 2πm, m ∈ Z; in such case, d212 = 4 due to a phase difference of π in the outgoing state when
the scattering system is changed.

S2. RATE OF ERROR FOR THE HOMODYNE SCHEME

S2.1. Noise statistics

In the experiment, we implemented a homodyne scheme based on digital off-axis holography. In the shot-noise limit
and with a strong reference beam (|Eref

k |2 � |Eout
i,k |2), the complex field retrieved by such homodyne scheme can be

modeled by an N -dimensional complex random variable Z such that [3]

ReZk ∼ N
(
ReEout

1,k , σ
2
)

and ImZk ∼ N
(
ImEout

1,k , σ
2
)

if H1 is true, (S12a)

ReZk ∼ N
(
ReEout

2,k , σ
2
)

and ImZk ∼ N
(
ImEout

2,k , σ
2
)

if H2 is true, (S12b)

where σ2 = 1/2. In practice, for measured data to follow these statistics, it is required to determine the value of
the internal gain of the camera, which is approximately 8.8 photo-electrons per digital count for our camera (Basler
acA1300-200um). Multiplying measured images by this gain factor ensures that intensities are expressed in terms of
numbers of photons—the sub-unitary quantum efficiency of the camera being then implicitly included in the definition
of measured transmission matrices.

To demonstrate that the data measured with our setup follow these statistics, we considered a data set composed
of 4000 fields measured in low-light conditions. Among them, 2000 fields were measured in the presence of the target,
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and 2000 fields were measured without the target. After subtracting the mean fields associated with the two different
scattering systems, we calculated the variance of field quadratures for each outgoing mode (Fig. S1a). It clearly
appears that the measured variance is uniform, and that its value is in excellent agreement with the theoretical value
σ2 = 1/2. Taking into account all modes within the field of view, we also verified that the measured distribution
of the field quadratures is a centered normal distribution (Fig. S1b). Results presented here were obtained with the
optimal incident state, a target composed of a single bead, and n = 2.9× 105 incident photons. Nevertheless, similar
results were obtained for all data presented in Fig. 3 of the manuscript, that were all acquired in low-light conditions.

FIG. S1. (a) Variance of the real part and the imaginary part of the field, experimentally measured with a homodyne scheme
in an off-axis configuration. k0 denotes the norm of the wavevector, while kx and ky denote its components along the x and y
directions, respectively. (b) Measured distributions of the field quadratures, after subtraction of the mean fields. The theoretical
distribution is a centered normal distribution of variance σ2 = 1/2. All figures are obtained from Nrep = 4000 measured fields
composed of N = 2617 spatial modes. These fields were acquired using the optimal incident state and n = 2.9 × 105 incident
photons.

S2.2. Theoretical probability of error

The minimum probability of error that can be achieved when choosing a hypothesis from measured data is expressed
by [4]

PG =
π1
2

erfc

[√
nd212
8σ2

+ ln

(
π1
π2

)√
σ2

2nd212

]
+
π2
2

erfc

[√
nd212
8σ2

− ln

(
π1
π2

)√
σ2

2nd212

]
, (S13)

where π1 and π2 are the a priori probabilities associated with each hypothesis. Assuming that π1 = π2 = 0.5, we
obtain

PG =
1

2
erfc

(√
nd212
8σ2

)
. (S14)

When estimating the probability of error PG from a finite number of trials Nrep, the number of errors that are observed
follows a binomial distribution. The variance of the estimate P̂G is then given by

Var
(
P̂G

)
=
PG(1− PG)

Nrep
. (S15)

For Nrep sufficiently large, the probability distribution of P̂G approaches a normal distribution. This property allows
us to define the following 95, 4% confidence interval:[

PG − 2

√
PG(1− PG)

Nrep
;PG + 2

√
PG(1− PG)

Nrep

]
. (S16)
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S2.3. Measured rate of error

The rate of error observed in the experiment is obtained by processing noisy data Z using the likelihood-ratio test,
which theoretically reaches the bound expressed by Eq. (S13). The decision criterion is given by

ln l(Z) < ln

(
π1
π2

)
→ choose H1, (S17a)

ln l(Z) > ln

(
π1
π2

)
→ choose H2, (S17b)

ln l(Z) = ln

(
π1
π2

)
→ choose either H1 or H2, (S17c)

where ln l(Z) is the log-likelihood ratio expressed by [4]

ln l(Z) = Re

[
N∑
k=1

(Eout
2,k − Eout

1,k )∗Zk

σ2

]
+

N∑
k=1

|Eout
1,k |2 − |Eout

2,k |2

2σ2
. (S18)

Calculating the log-likelihood ratio requires the knowledge of Eout
1,k and Eout

2,k , which are the expectation values of the
field under each hypothesis and for each outgoing spatial mode. These fields can be expressed as follows:

Eout
1,k =

Eout
s,k − Eout

d,k

2π1
, (S19a)

Eout
2,k =

Eout
s,k + Eout

d,k

2π2
, (S19b)

where we introduced Eout
s,k = π1E

out
1,k + π2E

out
2,k and Eout

d,k = π2E
out
2,k − π1Eout

1,k . There are different possible strategies to
assess Eout

s,k and Eout
d,k . A straightforward strategy entails estimating both Eout

s,k and Eout
d,k from measurements performed

with a large number of incident photons. Here, we opted for a different strategy, in which Eout
d,k is estimated from

measurements performed with a large number of incident photons, but with Eout
s,k being directly assessed from the

data measured in low-light conditions by averaging them over noise fluctuations (Eout
s,k ' 〈Zk〉). This strategy, which

is relevant only when Nrep is sufficiently large, allows to reduce biases that are observed when processing experimental
data, including those due to unwanted reflections of the reference field by the camera sensor, to wavefront distortions
generated by the optical elements used to control the incident photon flux, and to power fluctuations of the incident
laser beam. Nevertheless, biases can also appear in this case due to the finite number of measurements used to
estimate Eout

s,k , resulting in an observed rate of error that is slightly higher than the theoretically-predicted one (see
Fig. 3 of the manuscript).

S3. EXPERIMENTAL IMPLEMENTATION

S3.1. Optical setup

The optical setup used to acquire transmission matrices and perform measurements in low-light conditions is
represented in Fig. S2. The sample under study is composed of polystyrene beads dispersed on a glass coverslip.
To prepare this sample, we used a commercial solution of polystyrene beads (Polysciences Polybead, diameter 3 µm
±150 nm) that we diluted into 99% isopropyl alcohol. We then deposed it onto a clean glass coverslip and let it dry;
this results in a sample with a very low density of beads (approximately 1 bead inside a 100 µm×100 µm area). Using
this procedure, some of these beads are isolated, while others are aggregated into clusters. This allows us to study
both the case of one isolated bead, and the case of a cluster of beads.

The light source used in our experiments is a continuous-wave solid-state laser (Cobolt 08-DPL) emitting at λ =
532 nm. The laser light is coupled to a single-mode polarization-maintaining fiber and out-coupled using a collimator
(Schäfter+Kirchhoff 60FC-L-4-M75-01). A linear polarizer is used to ensure that the light is linearly polarized. The
beam is separated into a signal path and a reference path using a 90:10 (transmission:reflection) beamsplitter.

In the signal path, the light beam passes through a variable attenuator composed of a neutral density filter of
fractional transmittance Tnd = 10−3.6 mounted on a motorized flip mount (Thorlabs MFF101/M), a half wave-plate
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mounted on a motorized rotation mount (Thorlabs PRM1/MZ8) and a linear polarizer. The light beam is reflected
and modulated with a DMD (Vialux superspeed V-7001) using Lee holography [5], at a rate of 1400Hz. Light passes
through a 4f system composed of a 200mm lens (L1) and 30mm lens (L2). An iris located in the focal plane in-between
the two lenses selects the first diffraction order of the grating displayed by the DMD.

A first scattering layer composed of one ground glass diffuser (Thorlabs DG20-1500, 1500 grits) can be placed in
the focal plane of L2. This plane is optically conjugated with the sample plane using a 200mm lens (L3) and a
×20 objective (Mitutoyo Plan Apo SL 20X/0.28). The sample is mounted on a motorized translation stage (PI M-
122.2DD1). The sample plane is optically conjugated with an intermediate image plane, using a ×20 objective (Nikon
CF Plan 20X/0.35 EPI SLWD) and a 100mm lens (L4). A second scattering layer composed of two consecutive ground
glass diffusers (Thorlabs DG10-600, 600 grits) can be placed in this intermediate image plane. This configuration,
with two scattering layers optically conjugated with the sample plane, resembles a situation in which a (moving)
sample of interest is located within a (static) disordered material.

Light then passes through a 4f system composed of a 100mm lens (L5) and 200mm lens (L6). An iris located in the
focal plane in-between the two lenses blocks the light scattered at high angles by the second scattering layer. After
passing through a linear polarizer, a 90:10 (transmission:reflection) beamsplitter is used to recombine the reference path
with the signal path. The resulting intensity pattern is measured using a complementary metal oxide semiconductor
camera (Basler acA1300-200um) with an exposure time of 550 µs; both quadratures of the complex field are then
reconstructed using digital off-axis holography [6]. In order to reduce the influence of unwanted reflections of the
reference beam by the camera sensor, all basic optical components have an antireflective coating, and a small angle is
introduced between the beam and the normal to the camera.

FIG. S2. Schematic of the optical setup used to acquire transmission matrices and perform measurements in low-light conditions.
The sample is mounted on a motorized translation stage. The incident field is modulated with a digital micromirror device
(DMD) using Lee holography, and the outgoing field is measured by a camera using off-axis holography. Diffusers are placed in
intermediate image planes before and after the sample (this configuration optically imitates a situation in which the sample is
located within a disordered material). The incident photon flux is controlled with a variable attenuator. Pol, linear polarizer;
BS, beamsplitter; ND, neutral density filters; HWP: half wave-plate; Obj, microscope objective; NA, numerical aperture; L1
to L6, lenses.

S3.2. Measured intensity patterns with plane-wave illumination

In order to give a better insight of how complex the system is and how much the beam is spread at the bead
location, we use a (clipped) plane wave of normal incidence to illuminate the target without any scattering layer
(Fig. S3a), with only the first scattering layer located between the DMD and the sample (Fig. S3b), and with both
scattering layers (Fig. S3c). This clearly shows that both scattering layers are complex, since the plane wave becomes
a speckle after passing through the first scattering layer, and the speckle is fully different after passing through the
second scattering layer. The beam spread induced by the first scattering layer (composed on one single diffuser) is
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relatively small; in this way, we can be sure that no more than one bead interacts with the incident field (a few other
beads are also located on the same sample, but outside the field of view). In contrast, the beam spread induced by the
second scattering later is considerably larger, due to the presence of two contiguous diffusers in-between the sample
and the camera.

FIG. S3. Intensity distributions measured in the presence of the target for plane wave illumination (a) in the absence of both
scattering layers, (b) in the presence of the first scattering layer only and (c) in the presence of both scattering layers.

S4. ACQUISITION PROCEDURE

The acquisition procedure consists of three main steps:

1. We measure transmission matrices with and without the target, with a large number of incident photons. This
step allows us to access the discrimnation operator D12, from which optimal and average incident states are
calculated.

2. We generate the average field state as well as the first 15 eigenstates, with and without the target, and with a
large number of incident photons. This step allows us to ensure that the field states predicted from the knowledge
of D12 can be faithfully generated with our experimental setup. We also perform the same measurements in the
absence of the second scattering layer, in order to measure the field distribution in the target plane.

3. We drastically reduce the number of incident photons and we perform a large number of measurements, with
and without the target, using the optimal incident state as well as the average one. This step allows us to
experimentally quantify the rate of error achievable with each field state as a function of the number of incident
photons.

All three steps are performed by running the setup at 1400Hz, resulting in an effective acquisition rate of 700Hz.
Indeed, for each field that we want to measure, we also acquire a phase-reference field that is generated using a
plane wave of normal incidence. This procedure allows us to monitor how the global phase changes over time due
to temperature, mechanical and laser wavelength drifts. Global phase drifts are calculated from the complex inner
product of all phase-reference fields with the phase-reference field measured at the beginning of the acquisition. Spline
interpolations are then used to estimate and correct for the global phase drift at any time during the acquisition. This
procedure yields an inter-frame phase error of approximately 0.01 rad.

S4.1. Acquisition of transmission matrices

We measure two (sub-unitary) transmission matrices S1 and S2, relating incident field states to transmitted ones [7].
The matrix S1 is measured without the target in the field of view, and the matrix S2 is measured after translating the
target inside the field of view. In our experiment, these two transmission matrices are measured in 5.3 s. Note that
this time is limited by the acquisition rate of the camera, and could thus be reduced by using a high-speed camera
(one could also use a fast single-channel detector since the number of outgoing spatial modes can be taken as low
as N = 1). Measurements of S1 and S2 are performed with no density filter in the signal path, and thus with a
large number of incident photons. To illuminate the scattering system, we vary the incidence angle of a plane wave
that is clipped to a diameter of 40 µm in the sample plane. More precisely, we sample the incident field in Fourier
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space using a triangular lattice [8], covering a numerical aperture of NA = 0.25 with M = 1735 different incidence
angles. For each angle, we record the transmitted field using digital off-axis holography. This method relies on a
reference beam that is tilted by an angle with respect to the signal beam. With this approach, the complex field can
be directly accessed in Fourier space by selecting the first-order component. We therefore sample the transmitted
field in Fourier space, with the square lattice defined by the pixels of the camera, covering a numerical aperture of
NA = 0.25 with N = 2617 sampling points. Transmission matrices are therefore measured column by column and, as
a result, we obtain 2617× 1735 transmission matrices. We normalize these matrices by dividing them by

√
n0, where

n0 is the number of incident photons associated with each plane wave used to construct the transmission matrices.
This number was measured beforehand with a powermeter (n0 = 2.2× 1011 photons).

S4.2. Verification of predicted field states

From the knowledge of the two transmission matrices S1 and S2, the discrimination operator D12 = (S2−S1)†(S2−
S1) is easily calculated (processing time of 215 s). We specifically study the average state, defined as an equally-
weighted linear superposition of all eigenstates of D12, as well as the first 15 eigenstates of D12 (including the optimal
state, which is the first eigenstate of D12). We experimentally generate these states and, for each of them, we perform
50 measurements with and without the target, first in the presence of both scattering layers (in order to compare
experimentally-generated light states to predicted ones) and then in the absence of the scattering layer located after
the sample (in order to directly measure the field distribution in the target plane).

Averaging over measurements performed in the presence of both scattering layers allows us to compare experimentally-
generated light states |Eout,meas

i 〉 to the predicted ones |Eout,pred
i 〉 =

√
n0Si|E in〉. This comparison is achieved by

calculating the complex correlation coefficient Ci and the squared norm ratio Ri, that are respectively expressed by

Ci =
〈Eout,pred

i |Eout,meas
i 〉

‖Eout,pred
i ‖.‖Eout,meas

i ‖
, (S20a)

Ri =
‖Eout,meas

i ‖2

‖Eout,pred
i ‖2

. (S20b)

Results for the average state and the optimal state are presented in Table S1.

TABLE S1. Fidelity of the experimental generation of light states.

Single bead Six beads
Average state Optimal state Average state Optimal state

|C1| 0.97 0.96 0.97 0.96
|C2| 0.97 0.95 0.97 0.93
R1 1.3× 10−1 5.2× 10−3 1.3× 10−1 7.2× 10−3

R2 1.3× 10−1 5.4× 10−3 1.3× 10−1 7.4× 10−3

ηd 0.98 0.95 0.97 0.91

It clearly appears that the shape of outgoing states is faithfully generated by the DMD, with values of |Ci| between
0.9 and 1. However, the total intensity experimentally measured is significantly lower than the predicted one, with
Ri ' 10−1 for average states and Ri ' 5 × 10−3 for optimal ones. This is explained by the low photon efficiency of
techniques based on Lee holography to generate amplitude-and-phase modulated fields [5, 9]: for shaped waves, the
actual number of incident photons is equal to Tmod n0, where Tmod is the fractional transmittance of the modulation
technique. Indeed, while phase variations are encoded in the period of a binary grating, amplitude variations are
encoded by deflecting photons out of the optical path. The number of incident photons is thus larger for plane waves
than for shaped waves. Furthermore, the intensity distribution of optimal states is more spatially localized than those
of average states, resulting in a lower photon efficiency of the modulation technique. In practice, the squared norm
ratio R1 can be taken as an estimate of the fractional transmittance Tmod (the choice of R1 over R2 is made based
on the consideration that values measured in the absence of the target are free of possible positioning errors of the
translation stage). Finally, we calculate the ratio ηd between measured and predicted values for d212. We observe
that values of ηd are very close to unity, demonstrating that d212 is faithfully estimated from transmission matrix
measurements.
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S4.3. Measurements in low-light conditions

We finally perform many measurements in low-light conditions. To this end, we place a neutral density filter of
fractional transmittance Tnd = 10−3.6 in the signal path, and we use the variable attenuator to reduce even more the
number of incident photons, with a fractional transmittance Tva evenly varied 6 times between 0.1 and 1. The incident
number of photons is thus expressed by n = TndTvaTmod n0. In this way, we vary the number of incident photons from
740,000 to 7,400,000 when the average wave is used, and from 29,000 to 290,000 when the optimal wave is used (the
difference between values obtained for the average wave and for the optimal wave is due to different values of Tmod).
Since many photons are scattered out of the field of view by the diffusers, only a few photons are actually detected
by the camera: the number of detected photons ranges from 14 to 140 when using the average wave, and from 2 to
20 when using the optimal wave. We thus detect on average 1 photon for 53,000 incident photons with the average
wave, and 1 photon for 15,000 incident photons with the optimal wave. This demonstrates that the optimal state not
only leads to an increased interaction between the light and the object, but also more efficiently redirects the light
towards the observer, resulting in a larger ratio between detected and incident photons.

For each value of n, we successively generate the average state and the optimal state and, for each state, we
perform Nrep = 4000 measurements. As we assume that the a priori probabilities for each hypothesis are given
by π1 = π2 = 0.5, this results in the acquisition of 2000 measurements in the presence of the target and 2000
measurements in the absence of the target. In our experiment, this large data set (2 × 6 × 4000 measurements) is
measured in 104 s. We then calculate the log-likelihood ratio for each measured field with Eq. (S18), and we deduce
the experimental rate of error based on the decision criterion expressed by Eq. (S17) (processing time of 174 s). This
is finally compared to the theoretical rate of error expressed by Eq. (S14), where σ2 = 0.5 and d212 = ηd〈E in|D12|E in〉.

S5. INTENSITY DISTRIBUTION OF EIGENSTATES IN THE TARGET PLANE

S5.1. Small target

By performing measurements in the absence of the second scattering layer, we can directly access the intensity
distribution of the eigensates of D12 in the target plane. The number of significant eigenstates is theoretically
determined by the number of modes in the area At covered by the target, which can be approximated by Nt '
2πAtNA2/λ2 [10]. Using this expression, we obtain a number of modes of the order of 12 for a target composed of
a single bead, in agreement with the observed number of eigenvalues that are significantly above the noise floor (see
Fig. 2a of the manuscript). It is interesting to study the spatial distribution of the intensity associated with these
largest eigenvalues, as such light fields significantly interact with the target.

For a target composed of a single bead (Fig. S4), intensity distributions have a structured aspect that resemble those
of Laguerre-Gaussian modes. Assuming that light states are here optimal when they maximize the number of photons

FIG. S4. Intensity distributions measured in the target plane for the first 15 eigenstates of the discrimination operator D12,
along with an image of the target measured under spatially-incoherent illumination. The target is here composed of a single
bead. All figures correspond to intensity distributions measured in the absence of the target, except for the last figure which is
measured in the presence of the target. The field of view (edge size, 19.2 µm) is centered on the high-intensity area, and color
scales are identical to those shown in Fig. 2 of the manuscript.
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interacting with the target, these distributions can be understood as arising from a Gram-Schmidt orthogonalization
procedure: the first eigenstate generate a strongly focused beam at the target position, and the j-th eigenstate (j ≥ 2)
maximizes the number of interacting photons under the constraint that it must be orthogonal to the j− 1 previously-
calculated eigenstates. Note that the measured intensity distributions are localized around the target for the 15
eigenstates showed in Fig. S4, and not only for the 12 first eigenstates whose eigenvalues are significantly above the
noise level. This suggests that these last eigenstates—associated with eigenvalues Λ13 to Λ15—are weakly interacting
with the target, at the limit of the detection capabilities of our setup.

S5.2. Extended target

For a target composed of 6 beads (Fig. S5), intensity distributions are all spatially localized around the position of
the beads, but the shape of these distributions is more difficult to interpret than for the case of a single bead. For
instance, the first eigenstate focuses on 2 beads, while the third eigenstate focuses on 5 beads and the sixth eigenstate
focuses on a single bead. These different intensity distributions are likely to be due to the fact that all beads are not
equally connected to the far-field modes controlled in the experiment. This clearly shows that, for complex scattering
systems, the statistical distance d12 cannot be easily maximized by a simple focusing approach.

FIG. S5. Analogous to Fig. S4 for a target composed of 6 beads.
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