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The interaction of quantum light with matter is of great importance to a wide range of scientific disciplines, ranging
from optomechanics to high-precision measurements. A central issue we discuss here, is how to make optimal use
of both the spatial and the quantum degrees of freedom of light for characterizing and manipulating arbitrary
observable parameters in a linear scattering system into which suitably engineered light fields are injected. Here, we
discuss a comprehensive framework based on a quantum operator that can be assembled solely from the scattering
matrix of a system and its dependence on the corresponding local parameter, making this operator experimentally
measurable from the far field using only classical light. From this, the effect of quantum light in the near field, i.e., in
the vicinity of the target object, can be inferred. Based on this framework, it is straightforward to formulate optimal
protocols on how to jointly design both the spatial shape and the quantum characteristics of light for micro-
manipulation as well as for parameter estimation in arbitrarily complex media. Also, the forces of the quantum
vacuum naturally emerge from this formalism. The aim of our tutorial is to bring different perspectives into
alignment and thereby build a bridge between the different communities of wave control, quantum optics,
micromanipulation, quantum metrology, and vacuum physics. © 2024 Optica Publishing Group

https://doi.org/10.1364/JOSAB.522649

1. INTRODUCTION

The history of optics is marked by innovations that expanded
our ability to manipulate light fields to make them useful for
applications. Two research directions in which significant
progress is currently being made in the creation of customized
light fields are the domain of wavefront shaping, on the one
hand, and the domain of quantum state engineering, on the
other hand. While wavefront shaping is primarily concerned
with the spatial patterns of light waves and their control, quan-
tum state engineering deals with the quantum character of light
and how to make it exploitable in practice.

Until very recently, the developments in these two research
directions have been largely disconnected from each other. This
separation is all the more surprising as the areas of applications
that both wavefront shaping and the engineering of quan-
tum states are concerned with, overlap significantly. Consider
here, e.g., the field of imaging where considerable progress has
recently been made, both with spatially shaped light fields [1,2]
and by engineering its quantum nature [3,4]. In particular, by
spatially shaping an incoming light beam it becomes possible to
extract useful information from deeper layers of complex media
[5] or to view across them [6]. Quantum states of light, on the

other hand, have not only led to improvements in image resolu-
tion beyond the classical limit [7], but have also enabled entirely
new imaging protocols, such as “ghost imaging” [8,9]. Take as
another example, the field of optical micromanipulation, where
the spatial engineering of light beams has yielded the versatile
optical tweezers [10,11], while quantum optomechanics has
meanwhile achieved to cool down macroscopic objects into
their motional ground states [12–14] or to obtain squeezed light
from micromechanical resonators [15]. Finally, also in the field
of metrology, we now already understand very well how both the
spatial [16,17] and the quantum parameters [18–22] of light
fields need to be organized in themselves to achieve extreme
sensitivity in precision measurements.

Very recently, several works have appeared with the clear
intention of bridging the gap between the exciting advances that
have been made in the wavefront shaping community with those
in quantum state engineering. Notable results are here, e.g., the
precompensation of multiple photon scattering in complex
media [23,24], the spatial modulation of entangled photon
pairs for tailoring high-dimensional quantum entanglement
[25], and the combination of the phase sensitivity of NOON
states with the orbital angular momentum of photons [26].
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The controlled propagation of single-photon states through
complex media [27–29] has meanwhile also been extended to
the programmable propagation of two-photon states through
multi-mode fibers for advanced quantum information process-
ing [23,30]. Further results in this vein include the distillation of
quantum images [31], the real-time shaping of entangled pho-
tons using classical light [32], and the successful unscrambling
of entanglement through a complex medium [33].

In this tutorial we identify and match concepts that are cen-
tral both to wave control in complex media and to quantum
metrology. For the former, this concept is known as the gen-
eralized Wigner–Smith (GWS) operator [34,35], whereas for
the latter, the relevant concept is the generator of parameter
translations [36–39]. In the unified picture we provide here, we
portray these two tools as mutually beneficial sides of a single
coin. Correspondingly, we hope that the wavefront shaping
community will find this tutorial useful for the information it
provides on how to include the quantum parameters of light in
their protocols. The quantum metrology community, on the
other hand, may find it useful to find hints on how to transfer
and apply their knowledge to multi-mode complex scattering
systems.

2. SCATTERING THEORY

In the following Subsection 2.A, we provide an introduction to
the scattering matrix formalism in classical optics. After outlin-
ing the fundamentals of multi-mode quantum optics and laying
out the notation convention in Subsection 2.B, we describe how
the classical scattering matrix determines the evolution of multi-
mode quantum states of light in Subsection 2.C.

A. Scattering in Classical Optics

We start out by reviewing how the scattering of light can be
formalized in classical optics. For such scattering processes,
we distinguish the far field from the near field; see also Fig. 1.
Objects that govern the non-trivial propagation of the wave and
determine the scattering process are typically located in the near
field. The far field, on the other hand, is characterized by free
space propagation. The far field is chosen sufficiently far away
from the scattering region such that all evanescent waves have

vanished. We assume here that light sources and detectors are
placed in the far field only.

If the far field carries N propagating modes (throughout this
paper, we use the words “channel” and “mode” interchange-
ably), a wavefront that is injected into the system is described
by N amplitudes αin

m ∈C, one for each mode m ∈ {1, . . . , N},
or—more conveniently—by the vector αin

∈CN . Likewise, the
light that exits the system is described by the vector αout

∈CN .
Here, the amplitudes αm are defined w.r.t. a flux-normalized
basis [2]. The energy flux of the state α is given by ||α||2. In
an experiment, a detector typically measures the number of
photons hitting the camera surface, which corresponds to the
integrated energy flux [2]. For this reason, we will call ||α||2 the
intensity of the stateα.

The system is said to be linearly scattering if the media that
the objects are made of have linear constitutive equations. Many
“ordinary” optical elements are linear, e.g., mirrors, lenses,
prisms, gratings, cavities, and optical fibers. A linear scatter-
ing system is fully characterized by the frequency-dependent,
so-called (classical) scattering matrix S(ω) ∈CN×N , which
maps incoming monochromatic states of light αin(ω) to the
corresponding output statesαout(ω) [2]:

αout(ω)= S(ω)αin(ω). (1)

Losses are small in optical media and can be often neglected.
One could include them in the formalism, though, by addi-
tion of fictitious modes to the system that account for both the
dissipation and the fluctuations associated with the losses; see,
e.g., [40] and Sec. 6.2 of [41]. Here, we deal with media that
have negligible loss and gain. For such media, the scattering
matrix is unitary, and the output intensity equals the input
intensity:

S†(ω)S(ω)= 1⇒||αout(ω)||2 = ||αin(ω)||2. (2)

Experimentally, the optical transmission and reflection matri-
ces, which are sub-parts of the scattering matrix, have been mea-
sured already [42–47].

Standard sources of classical light are lasers. Forming a given
spatially shaped input stateαin(ω) is called “wavefront shaping”
[1,2]. This is achieved by employing tools such as spatial light
modulators, digital micromirror devices, or deformable mirrors
in combination with lenses [1,48–53]. Conventional detectors

Fig. 1. Electromagnetic waveguide (gray) with rectangular cross-section Wy ×Wz , extending along the x -axis. A section of the front sidewall and
the top plate are not shown to reveal a view of the interior. Scatterers (red) with different shapes and refractive indices constitute a scattering landscape
inside the waveguide. The near field (green) covers the spatial area where the scatterers are located. Its borders are defined as x = 0 and x = L . The
region outside the near field is called the far field (blue). The transverse profiles of the first three electromagnetic waveguide modes in the y -direction,
ψ1,ψ2 andψ3, are indicated in turquoise, blue, and purple, respectively.
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are charge-coupled device cameras. Homodyne detection pro-
vides a scheme to measure both the amplitude and the phase of
an optical light field [54].

The ideas and concepts that are discussed in this tuto-
rial are kept very general and therefore apply to a wide range
of optical systems. For illustration purposes, we select a
concrete physical system, consisting of an infinite metallic
waveguide along the x -axis with cross-section Wy ×Wz;
see Fig. 1. The interior is filled with an isotropic, time- and
z-independent medium described by the scalar electric sus-
ceptibility χe(ω; x , y ). We assume a vanishing magnetic
susceptibility χm = 0, such that the refractive index land-
scape is given by n(ω; x , y )=

√
1+ χe(ω; x , y ). Apart from

this, there are no free charges or currents. We consider only
monochromatic waves with frequency ω and wavenumber
k =ω/c . Furthermore, we demand that the waveguide is so
narrow in the z-direction that only TEm y ,mz modes with mz = 0
can propagate. This is the case whenever Wz <π/k. In the
following, we write W ≡Wy and m ≡m y . The TEm,0 modes
are independent of the z coordinate and they are polarized in the
z-direction,

E(r, t)=ψ(ω; x , y )e−iωtez. (3)

Inserting this field into Maxwell’s equations yields the scalar
two-dimensional Helmholtz equation,(

∂2
x + ∂

2
y + k2n2(ω; x , y )

)
ψ(ω; x , y )= 0, (4)

with the boundary conditions

ψ(ω; x , 0)= 0, (5)

ψ(ω; x ,W)= 0. (6)

In the far field, where n(ω; x , y )= 1, the waveguide modes
are given by

ψ±m (ω; x , y )=

√
2

W
sin
(mπ y

W

) e±ikx
m x√

kx
m

, (7)

where the sign ± indicates the direction of travel (+/− for
propagation in positive/negative x -direction), and

kx
m =

√
k2 −

m2π2

W2
(8)

is the wavenumber in the direction of propagation. The
mode m is called “open” or “propagating” when kx

m is real,
i.e., m < kW/π . The mode m is called “evanescent” when
kx

m is imaginary, i.e., m > kW/π . Such modes decay expo-
nentially fast and are not able to propagate into the far field.
For a given frequency ω= c k and waveguide width W ,
there are N′ := bωW/πcc open modes for each direction
of propagation.

In the near field, the scattering medium with n(ω; x , y ) 6= 1
should lie within x ∈ [0, L]. The two lines x = 0 and x = L
mark the transition from the near field to the far field and serve
as references for the scattering matrix (i.e., the numerical entries
of S will depend on the choice of L). In the far field, a general

solution of Eqs. (4)–(6) can be decomposed according to (l/r
refers to the left/right lead, i.e., x ≤ 0/x ≥ L)

ψ(ω; x ≤ 0, y )=
N′∑

m=1

α+l ,m(ω)ψ
+

m (ω; x , y )

+

N′∑
m=1

α−l ,m(ω)ψ
−

m (ω; x , y ), (9)

ψ(ω; x ≥ L, y )=
N′∑

m=1

α+r ,m(ω)ψ
+

m (ω; x − L, y )

+

N′∑
m=1

α−r ,m(ω)ψ
−

m (ω; x − L, y ). (10)

The input wave is composed of right-traveling modes in the left
lead and left-traveling modes in the right lead. For the output
wave, the directions of travel are reversed. The input and output
amplitudes are collected in the vectors

αin(ω)=

(
α+l (ω)

α−r (ω)

)
, αout(ω)=

(
α−l (ω)

α+r (ω)

)
, (11)

respectively. In total, there are N = 2N′ input and output
modes. The scattering matrix S(ω) is defined through Eq. (1).
The factor 1/

√
kx

m in Eq. (7) is necessary in order for the modes
ψ±m to be normalized w.r.t. the longitudinal flux [2]. The
scattering matrix S(ω) is unitary only with this normalization.

A complex scattering system, as the one we are interested
in here, is realized, e.g., by placing several scattering elements
inside the waveguide; see Figs. 1 and 2(a). Let us consider a
target scatterer in the shape of a square with side length W/10
which is positioned at the center of the waveguide. The tar-
get is metallic, which means that we impose homogeneous
Dirichlet boundary conditions along its border. A complex
scattering environment is provided by surrounding the target
with 20 randomly placed circular scatterers with radius W/20.
The refractive index of those scatterers is chosen as 1.44. We
numerically calculate the scattering matrix of this system for
the wavenumber k = 20.5π/W such that N′ = 20 modes are
open for each direction of propagation, i.e., there are N = 40
open modes in total. Figure 2(b) shows the absolute values of
the entries of the scattering matrix, their seemingly random
distribution being a hallmark for complex scattering.

B. Fundamentals of Quantum Optics

The classical magnetic vector potential A is usually decomposed
in a suitable basis of modes. For the monochromatic Fourier
component at frequencyω> 0, this decomposition reads

A(r, ω)=
N∑

m=1

am(ω)Am(r, ω) . (12)

In the following, we consider only a single-frequency com-
ponent and thus omit to write ω. The so-called “second
quantization” or “canonical quantization” of electromag-
netic radiation consists in replacing the coefficients am by the
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(a)

(b)

Fig. 2. Physical setup of the waveguide system. (a) Geometrical
configuration: A metallic target (red square) is positioned inside
a waveguide of width W . The target is surrounded by randomly
placed circular scatterers (orange) with a refractive index of n = 1.44.
(b) Scattering matrix: Absolute values of the entries of the numerically
calculated scattering matrix for the wavenumber k = 20.5π/W , where
N = 40 waveguide modes are open.

annihilation operators âm of the respective modes:

Â(r)=
N∑

m=1

âmAm(r). (13)

The Hermitian conjugates â †
m of the annihilation operators

are called “creation operators.” The operators fulfil the bosonic
commutation relations:[

âm, â †
m′
]
= δm,m′ ,

[
âm, âm′

]
= 0,

[
â †

m, â †
m′
]
= 0. (14)

Physically speaking, the annihilation and creation opera-
tors destroy and create single quanta of light, i.e., photons,
respectively. We denote the column vector consisting of the
annihilation operators by

[â ] :=
(
â1, â2, . . . , â N

)> (15)

and likewise [â †
] for the creation operators. The observables

n̂m := â †
m âm, (16)

n̂ :=
N∑

m=1

n̂m (17)

measure the number of photons in mode m and the total
number of photons, respectively. The Hamiltonian of the

electromagnetic field turns out to be

ĤEM =

∫
dω

N∑
m=1

~ω
(

n̂m +
1

2

)
. (18)

This means that the quantized electromagnetic field can be pic-
tured as a collection of independent harmonic oscillators, one
for each mode at each frequency. Correspondingly, multi-mode
light can take the same quantum states as a multi-dimensional
harmonic oscillator. Similar to the position and momentum of a
harmonic oscillator, the so-called “quadratures” of mode m are
introduced as

q̂m :=
1
√

2

(
âm + â †

m

)
, (19)

p̂m :=
−i
√

2

(
âm − â †

m

)
. (20)

A rotation in the phase space spanned by q̂m and p̂m yields the
“rotated” quadratures (also often just called quadratures):

q̂m(ϕ) := cos(ϕ)q̂m + sin(ϕ) p̂m

=
1
√

2

(
e−iϕ âm + eiϕ â †

m

)
, (21)

p̂m(ϕ) :=− sin(ϕ)q̂m + cos(ϕ) p̂m

=
−i
√

2

(
e−iϕ âm − eiϕ â †

m

)
. (22)

Below, we discuss a physically relevant selection of quantum
states of light with N modes. To make it clear that the represen-
tation is rooted in the “standard” modes [e.g., the waveguide
modes Eq. (7)], we use the superscriptM in the notation. Later
on, we will use other representations as well.

Coherent states |α〉M are parameterized by a vector of coher-
ent amplitudes α ∈CN . Introducing the following unitary dis-
placement operator,

D̂a (α) := exp
(
α>[â †

] − α†
[â ]
)
, (23)

the coherent state |α〉M is created from the vacuum state |0〉 via
displacement [see also Fig. 3(a)]:

|α〉M := D̂a (α)|0〉. (24)

Coherent states are eigenstates of the annihilation operators,

âm |α〉
M
= αm |α〉

M, (25)

and they have the mean photon numbers

M
〈α|n̂m |α〉

M
= |αm |

2, (26)

M
〈α|n̂|α〉M = ‖α‖2. (27)

They exhibit equal minimum uncertainty (i.e., varianceV) in all
quadratures,
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(a)

(b)

Fig. 3. Phase space representation of single-mode Gaussian states of light. The gray circles and ellipses represent contour sections of the Wigner
functions. (a) A coherent state |α〉 is created from the vacuum state |0〉 by applying the displacement operator D̂(α). (b) A squeezed state |α, z〉with
z= r eiϕ is created from the vacuum state |0〉 by first applying the squeezing operator Ŝ(z) and then the displacement operator D̂(α). Here, the
squeezing parameters are chosen as r = 0.8 andϕ = 60◦ = π/3.

∀m ∈ {0, . . . , N} ∀ϕ ∈ [0, 2π) :V|α〉M [q̂m(ϕ)]

≡
M
〈α|q̂ 2

m(ϕ)|α〉
M
−

(
M
〈α|q̂m(ϕ)|α〉

M
)2
=

1

2
, (28)

which makes them the “most classical” states of quantum light.
Coherent states |α〉M can thus be identified with the classical
light statesα discussed in Subsection 2.A.

Squeezed states |α, Z〉M are parameterized by a vector of
coherent amplitudes α ∈CN and a symmetric squeezing matrix
Z ∈CN×N [55]. Introducing the unitary squeezing operator
(note the different sign convention in Ref. [55])

Ŝa (Z) := exp

(
1

2

(
[â ]>Z∗[â ] − [â †

]
>

Z[â †
]

))
, (29)

the squeezed state |α, Z〉M is obtained from the vacuum state
by squeezing it by Z first and then displacing it by α [see also
Fig. 3(b)]:

|α, Z〉M := D̂a (α)Ŝa (Z)|0〉. (30)

The Wigner function of a squeezed state is a Gaussian [41]. For
this reason, squeezed states (including coherent states) are also
often called “Gaussian states.”

We now discuss a specific decomposition of the squeezing
matrix Z which will be useful in later calculations. This decom-
position is the counterpart to the polar representation of a scalar
complex number, z= r eiϕ , and is thus called “polar decomposi-
tion.” Any finite-dimensional square matrix can be decomposed
into a product of a Hermitian and a unitary matrix [55]:

Z=Rei8. (31)

Both matrices R and 8 are Hermitian with the properties
0�R, 0≺R⇔ det(Z) 6= 0, and 0�8≺ 2π1. For Hermitian
matrices A, B we denote A≺ B if B− A is positive definite and
A� B if B− A is positive semidefinite. R is always unique, but
8 is unique if det(Z) 6= 0. The polar decomposition can be
obtained from the singular value decomposition Z=U6V† as
R=U6U† and ei8

=UV†.
In Appendix C.1 we show that the mean photon numbers of a

squeezed state are

M
〈α, Z|n̂m |α, Z〉M = |αm |

2
+
(
sinh2

(R)
)

m,m, (32)

M
〈α, Z|n̂|α, Z〉M = ||α||2 + tr

(
sinh2

(R)
)
, (33)

where sinh2 is to be applied as a proper matrix function.
If the squeezing matrix is diagonal, Z= diag(ζ1, . . . , ζN)

with ζm = rmeiϕm , the squeezed state factorizes into a product
of single-mode squeezed states. In phase space, the physical
interpretation of the parameters rm and ϕm/2 is squeezing
strength and squeezing angle, respectively; see also Fig. 3(b).
The squeezing strength determines the uncertainties in the
rotated quadratures (a proof is omitted here):

V|α,Z〉M
[
q̂m (ϕm/2)

]
=

e−2rm

2
, (34)

V|α,Z〉M
[

p̂m (ϕm/2)
]
=

e2rm

2
. (35)

Squeezing strengths (r ) are often stated in units of decibel, the
conversion being 20

ln(10)r dB≈ 8.686r dB. The highest squeezing
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strength currently accomplished experimentally is 15 dB or
r ≈ 1.73 [56].

C. Scattering in Quantum Optics

Analogously to Eq. (1), which describes unitary classical scat-
tering, we declare a unitary quantum scattering process to be
defined by a unitary operator Û mapping pure input states to
pure output states:

|ψout
〉 = Û |ψ in

〉. (36)

This operator Û is determined by the input–output relation
of the mode operators âm and â †

m . We assume a linear input–
output relation, allowing for annihilation operators to be
transformed into annihilation operators only. This covers all
passive linear elements as discussed in Subsection 2.A [57,58].
For optomechanical and micromechanical systems which do
not satisfy this condition, our framework is restricted to the
linear regime (as realized, e.g., for sufficiently low intensities). In
formal terms, such a transformation reads[

Û †âÛ
]
= A[â ]. (37)

As Maxwell’s equations hold both for classical and quantum
fields, the quantum amplitude must transform in exactly the
same way as the classical ones. Hence, the matrix A must be the
classical scattering matrix S. This is confirmed by Eq. (41). The
unitarity Eq. (2) of S ensures that the transformed operators still
fulfill the commutation relations Eq. (14). In terms of S, the
unitary operator Û is given as [55,57,58]

Û =
√

det(S) exp
(
[â †
]
>

ln(S)[â ]
)

. (38)

This relation yields the main insight of this subsection, namely
that the scattering behavior of multi-mode quantum light is
fully determined by the classical scattering matrix alone. In gen-
eral, the task of determining a quantum unitary gate by probing
it with different (often coherent) states is called “quantum
process tomography” [43,59–61].

A first important observation is that such a quantum process
does not change the total photon number, i.e., n̂Û = Û n̂. This
can be shown by using Eqs. (2), (16), (17), and (37):

Û †n̂Û = Û †
[â †
]
>
[â ]Û =

[
Û †â †Û

]>[
Û †âÛ

]
=
(
S∗[â †
]
)>

S[â ] = [â †
]
>S†S[â ]

= [â †
]
>
[â ] = n̂. (39)

According to Ref. [55], the scattering behavior of a Gaussian
state is given by

Û |α, Z〉M =
√

det(S)|Sα, SZS>〉M. (40)

Coherent states are transformed according to the classical
scattering matrix:

Û |α〉M =
√

det(S)|Sα〉M. (41)

3. WIGNER–SMITH FORMALISM

A. Classical Wigner–Smith Matrix

As was first shown by Eisenbud, Wigner, and Smith [62–64],
the scattering matrix provides access to the time spent by waves
in the scattering process through the Wigner–Smith time-delay
matrix,

Qω :=−iS†(ω)∂ωS(ω), (42)

involving a frequency derivative of the scattering matrix. The so-
called “proper delay times” are defined as the eigenvalues of this
Hermitian matrix [65,66] and the corresponding eigenstates,
also known as “principal modes” [67], are the input vectors (in
the mode basis) for the scattering states associated with these
well-defined delay times. This concept can be generalized to
involve, instead of the frequency derivative, a derivative with
respect to any other parameter θ that the scattering matrix
depends on [68,69]. Instead of the time-delay—as the conjugate
quantity to the frequency—such a GWS matrix, defined as

Qθ :=−iS†(θ)∂θS(θ), (43)

then provides access to the physical observable associated with
the quantity conjugate to θ [34,35]. Let θ be, e.g., the position
or the rotation angle of a target. In this case, the expectation
value α†Qθα is proportional to the mean force or torque,
respectively, acting on this target in the direction of increasing
θ by the input state α. We call these optomechanical forces and
torques (and other transfers of quantities conjugate to some θ )
“generalized forces.”

By definition, the GWS matrix is Hermitian if the scattering
matrix is unitary:

∂θ
(
S†S

)
= (∂θS)

†S+ S†∂θS= 0

⇒Q†
θ = i(∂θS)

†S=−iS†∂θS=Qθ . (44)

This implies that the eigenvalues λi of Qθ are real-valued and
the corresponding eigenvectors wi form an orthonormal basis
ofCN :

Qθwi = λi wi⇔Qθ =W3W†. (45)

The eigenvectors wi are the input states that deliver a certain
generalized force conjugate to θ that is proportional to the cor-
responding eigenvalue λi . Consequently, the eigenvector of the
GWS matrix with the largest eigenvalue provides the incoming
wavefront that couples to the parameter θ most strongly and
thus constitutes the optimal wave state for micromanipulating
this target. The GWS matrix can, however, also be applied in a
broader context such as for the optimal cooling of an ensemble
of particles [70], for the identification of channels that are resil-
ient to disorder [71], or for the optimal retrieval of information
on the system parameter θ in an arbitrarily complex scattering
environment [17].

The purpose of the GWS matrix is to provide access to the
relevant quantities for manipulating a target without knowl-
edge of the target’s near field; only the scattering amplitudes
in the far field and their dependence on the relevant parameter
θ are required. Since no direct access to the target scatterer is
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(a) (b)

(d)(c)

Fig. 4. Classical optical micromanipulation with the parameter of interest θ being the horizontal position x or the vertical position y of the
target (red square in the center). The corresponding GWS matrices Qθ and their eigenvalues quantify the corresponding momentum transfers onto
the target. The plots show the spatial intensity distributions of the emerging waves when specific eigenstates of the GWS matrices Qθ are injected
into the system. In the regions of high intensity close to the target, the wave exerts a local force onto the target. (a) Maximum force to the right:
Eigenstate corresponding to the maximum eigenvalue of Qx . (b) Maximum force to the left: Eigenstate corresponding to the minimum eigenvalue
of Qx . (c) Maximum force upwards: Eigenstate corresponding to the maximum eigenvalue of Qy . (d) Maximum force downwards: Eigenstate
corresponding to the minimum eigenvalue of Qy .

necessary in this way, this target may also be hidden behind
or inside a complex medium like a disordered material. Note
that, for accessing the θ -dependence of the scattering matrix,
a small, controlled variation of θ must occur in the system.
Experimentally, there are different ways of how this can be
achieved, such as by externally induced forces (using acoustic,
magnetic, or gravitational fields [72–75]) or by autonomous
movement [70,76,77].

To illustrate how the GWS matrix is employed for micro-
manipulation, we turn to the generic example introduced at
the end of Subsection 2.A. For the parameter θ we choose two
realizations that we consider separately: horizontal (θ = x ) and
vertical (θ = y ) displacement of the target. In the numerical
simulation, we use a finite difference approximation for the
θ -derivative. Figures 4(a) and 4(b) show the spatial intensity
distribution of the wave that emerges when injecting eigenstates
of Qx into the system corresponding to the maximum and
minimum eigenvalues, respectively. In the immediate vicinity
of the target, regions of high intensity exert a force onto the
target. It is apparent that the waves in Figs. 4(a) and 4(b) lead
to a force pointing to the right and left, respectively. Likewise,
Figs. 4(c) and 4(d) show the eigenstates of Qy corresponding to
the maximum and minimum eigenvalues, respectively.

First experimental implementations of the GWS matrix for
manipulating particles have been presented using audible sound
for guiding a ping-pong ball through a disordered environment
[78] and using optical light fields for creating bespoke optical
tweezers with increased trapping stiffness [79].

B. Quantum Wigner–Smith Operator

Let us now extend the scope of the GWS matrix from classi-
cal wave physics to quantum mechanics. To this end, we will

reformulate the Wigner–Smith framework such as to apply
it also to quantized electromagnetic fields. A central insight
in this context is the result from Subsection 2.C that for any
linear optical network, the classical description of scattering can
be directly translated into an equivalent quantum evolution.
In the same way as the scattering matrix S transfers the vector
of classical input amplitudes to the output, see Eq. (41), the
unitary operator Û acts on the corresponding multi-mode input
quantum state to yield the corresponding output quantum state;
see Eq. (36). Correspondingly, we translate the GWS matrix Qθ

from Eq. (43) by replacing S with Û to arrive at what we refer to
as the quantum Wigner–Smith (QWS) operator:

Q̂θ :=−iÛ †(θ)∂θÛ(θ). (46)

This operator is formally equivalent to the Hermitian gener-
ators that are commonly used in the field of quantum metrology
to find optimal states for parameter estimation [36–39].
However, in quantum metrology, Û is typically a time-evolution
operator describing the sensor dynamics, and it is expressed
through the Hamiltonian of the system. In contrast, Û is here an
operator describing complex light scattering within the system
[according to Eq. (36)], and it is expressed through the classical
scattering matrix S [according to Eq. (38)].

Note that the definition [Eq. (46)] of the QWS operator
and its connection to the major quantities in this work, like the
generalized force in Eq. (53) and the quantum Fisher informa-
tion in Eq. (68), remain valid for processes that are not linear
on the classical level, but still linear on the quantum level. Such
processes, including so-called “active linear elements” like
phase conjugation mirrors or parametric amplifiers, cannot
be described by a classical scattering matrix, but by a unitary
quantum operator [57,58]. Throughout the rest of this paper,
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we focus on processes that are linear on the classical level since
in this case all the quantities are expressible in terms of the
experimentally accessible scattering matrix.

To arrive at the main result of this work, we insert the transfor-
mation Eq. (38) into the definition Eq. (46) of the QWS opera-
tor (a detailed derivation is given in Appendix A):

Q̂θ = [â †
]
>Qθ [â ] +

1

2
tr(Qθ ). (47)

This remarkably simple relation provides an operational pro-
cedure for translating the classical scattering amplitudes in
the measurable GWS matrix Qθ to a corresponding quantum
operator Q̂θ . This is most directly seen in the first term on the
right-hand side of Eq. (47), which simply couples the elements
of the classical GWS matrix to the corresponding quantum
channels, similar to the Jordan–Schwinger map [80,81]. The
QWS operator inherits some properties from the GWS matrix,
like being Hermitian for unitary systems and its ability to express
local phenomena in terms of the far-field scattering amplitudes.
Moreover, as a result of the non-linear relation in Eq. (38), the
normal ordering in Eq. (47) and the non-commutativity of the
mode operators, we do find an additional scalar trace term [the
second term on the right-hand side of Eq. (47)]. As it turns out,
this term is not connected to the force exerted by the injected
field, but rather due to the forces of the quantum vacuum. This
will be discussed in more detail in Section 5.

The QWS operator unites the spatial and the quantum
degrees of freedom of scattered light fields such that we can
describe and optimize them jointly to perform both microma-
nipulation and parameter estimation at the optimal level of
efficiency, as will be detailed in the following Sections 4 and 6.

Before doing so, we introduce a new representation (in
contrast to the modal representation M) based on the eigen-
decomposition Eq. (45) of the GWS matrix Qθ . This new
representation will be very useful for upcoming calculations. We
indicate it with the symbol Q. The channels that form the basis
of the Q representation are given by the eigenvectors wi of Qθ .
These eigenvectors are the columns of the unitary matrix W. We
denote the corresponding annihilation operators with b̂i , and
their connection to the mode operators âm is expressed as

[b̂] =W†
[â ]. (48)

Due to the unitarity of W, the total photon number operator is
independent of the representation [see Eq. (17)],

ν̂ :=

N∑
i=1

b̂†
i b̂i = [b̂†

]
>
[b̂] = [â †

]
>WW†

[â ] = [â †
]
>
[â ] = n̂.

(49)
It is straightforward to show that the displacement opera-
tor Eq. (23) and the squeezing operator Eq. (29) transform
according to

D̂a (α)= D̂b
(
β :=W†α

)
, (50)

Ŝa (Z)= Ŝb
(
4 :=W†ZW∗

)
. (51)

We denote

|β,4〉Q := D̂b(β)Ŝb(4)|0〉, (52)

which is the same state as |α, Z〉M but in a different repre-
sentation. The polar decomposition [see Eq. (31)] 4= Pei9

transforms according to P=W†RW and ei9
=W†ei8W∗.

4. QUANTUM MICROMANIPULATION

A first application of the QWS operator lies in micromanip-
ulation, in which domain the quantum degrees of freedom of
light have, e.g., been used already to improve cooling protocols
[82–85]. Here, we are interested in finding a state of light that,
when injected into the scattering system, optimally couples to
the system property described by θ , which can be any geometric
or material parameter characterizing the scattering system as a
whole or any part of it. For a given fixed mean photon number,
which is proportional to the total energy of the incident light
(apart from the zero point energy), we aim to identify input
states that exert the highest generalized force in the direction of
increasing θ , when compared to all other possible input states
with the same mean photon number.

In Appendix B.1 we show that the multi-spectral quantum
operator corresponding to the generalized force conjugate to θ is
given by the following expression, which involves all frequency
components in the entire electromagnetic spectrum:

K̂ θ =
1

2π

∫
∞

0
Q̂θdE . (53)

Here, E = ~ω denotes the photonic energy corresponding to
the frequencyω,~ being the reduced Planck constant. This rela-
tion shows that, for a broadband light field, the QWS operator is
the spectral density of the generalized force.

Next, we insert Eq. (47) into Eq. (53) and take the expec-
tation value with respect to some input state of light |90〉. It
is to be understood that |90〉 is composed of spectral compo-
nents |ψE 〉 from the whole energy spectrum with respective
amplitudes c (E ). We can identify two contributions to the
generalized force:

〈90|K̂ θ |90〉 =
1

2π

∫
∞

0
〈ψE |[â †

]
>Qθ [â ]|ψE 〉|c (E )|2dE

+
1

4π

∫
∞

0
tr(Qθ )dE .

(54)

The second term, which is independent of the input state, is
solely due to the vacuum fluctuations of the electromagnetic
field, as is discussed in more detail in Section 5. The first term,
on the other hand, can be engineered by proper choice of the
input state. One is free to select a single operating frequency
or choose a frequency window at which one desires to perform
micromanipulation.

In the following, we derive the optimal input states at a single
fixed frequency. As we will see below, a general feature of these
optimal quantum input states is that their spatial profiles are
always the classical ones, i.e., those obtained by an eigenvalue
decomposition of the classical GWS matrix. Examples for such
optimal spatial profiles are shown in Fig. 4. Moreover, the choice
of the quantum state that is injected into this classical channel
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does not change the resulting mean generalized force, as long as
the quantum states carry the same mean total photon number ν.

We write the QWS operator from Eq. (47) in theQ represen-
tation using Eqs. (45) and (48):

Q̂θ =

N∑
i=1

ν̂iλi +
1

2

N∑
i=1

λi , (55)

where ν̂i := b̂†
i b̂i is the photon number operator in the i th

eigenchannel of Qθ . With the respective mean photon numbers
νi := 〈ψ |ν̂i |ψ〉 ≥ 0, we can write the expectation value of the
generalized force as

〈ψ |Q̂θ |ψ〉 =

N∑
i=1

νiλi +
1

2

N∑
i=1

λi . (56)

Each photon in channel i deposits a generalized force of value
λi onto the target. The mean force is additive in the mean pho-
ton number and correlations between photons are irrelevant
in this case (similar to the radiation pressure force in cavity
optomechanics [86]). The optimal way of using all ν =

∑N
i=1 νi

photons is to put them all into the channel corresponding to
the highest eigenvalue λimax . This optimal state has a well-
defined spatial shape which matches the classical optimum;
see also Fig. 4. The resulting optimal expectation value of the
generalized force is

max|ψ〉,〈ψ |ν̂|ψ〉=ν〈ψ |Q̂θ |ψ〉 = νλimax +
1

2

N∑
i=1

λi . (57)

This solution is specified just by the mean photon numbers νi in
the GWS eigenchannels. This means that there is a degeneracy
regarding the optimal input state: whereas injecting all photonic
resources into the channel imax is sufficient for reaching optimal-
ity, the specific type of quantum state that is injected into this
channel is irrelevant.

The considerations above focus on the mean force only. For
precise nanoscale micromanipulation, however, also the fluc-
tuations of the force must be minimized. These fluctuations

are measured by the standard deviation of the generalized force
operator K̂ θ . Here, we may exploit the degeneracy of the opti-
mal input state mentioned above. For simplicity, we make the
approximation that contributions from different parts of the
frequency spectrum are independent of each other (although
they are known to exist [1,87]). This way, the variance of K̂ θ

is just the integrated variance of the QWS operator Q̂θ . The
previously mentioned degeneracy gives us room to choose the
parameters of the input state in such a way as to minimize the
standard deviation of Q̂θ while keeping its expectation value
constant. Here, as an example, we focus on Gaussian states as
they can readily be prepared in experiments, and they allow
for an analytical theoretical treatment [88–91]. It turns out
that for any fixed mean photon number ν there is a non-trivial
combination of mean coherent amplitude and squeezing that
results in a minimal standard deviation of Q̂θ . The details are
provided in Appendix B.2. Figure 5(a) shows the optimal mean
coherent amplitude and the optimal squeezing strength, both
in the relevant channel imax, as a function of ν. The squeezing
direction is always parallel to the coherent amplitude. The
advantage one gains from this strategy is significant: when
compared to the optimal classical (“unsqueezed”) state, one is
able to reduce the standard deviation by more than half beyond
a mean photon number of ν = 49 [see Fig. 5(b)], even though
the necessary squeezing strength popt is not exceptionally high
(popt ≈ 7.65 dB for ν = 49), increasing at most logarithmically
with ν,

popt(ν)=
1

6
ln(4ν)+ O

(
1

ν

)
. (58)

These results hold for first maximizing the expectation value
of Q̂θ and then minimizing its variance. The order of maxi-
mization and minimization is crucial here. Likewise, one can
also consider a joint optimization of both quantities with
appropriately weighted penalties.

(a) (b)

Fig. 5. Quantum-enhanced optimal micromanipulation. The strength of fluctuations in the optomechanical force is given by the standard devi-
ation σ of the corresponding QWS operator. The aim is to minimize those fluctuations while keeping the mean force (i.e., the expectation value of
the QWS operator) constant. We consider Gaussian input states and compare the optimal squeezed state to the optimal classical (i.e., coherent) state.
(a) Optimal Gaussian input state: Solid lines show the parameters for the optimal squeezed state as a function of the mean photon number ν. The
optimal absolute value of the mean coherent amplitude and the optimal squeezing strength are denoted by |βopt| and popt, respectively. Mind the log-
arithmic scale for ν and |βopt|, whereas popt is shown on a linear scale. For comparison, the best classical state, characterized by popt = 0 and |βopt| =√
ν, is indicated by dotted lines—the difference between the solid red line and the dotted red line is minute. (b) Reduction factor of standard devia-

tion (std): This plot shows the factor by which the force fluctuations are reduced when using the optimal squeezed state (σsq) instead of the optimal
classical state (σcl).
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5. VACUUM FORCES

The quantum Wigner–Smith operator Q̂θ describes the forces
of the radiation field upon the parameter θ—forces that can be
harnessed for optical micromanipulation. In this section, we
aim to discuss the physical meaning of the trace term appearing
in Eq. (47). Note that this term is the vacuum expectation value
of Q̂θ :

〈0|Q̂θ |0〉 =
1

2
tr(Qθ ). (59)

This trace term has a physical meaning with a distinguished
history: it describes the forces of the quantum vacuum [92–95].
These are the generalized van der Waals forces [94,96]—the
Casimir–Polder forces between two molecules [97] or the
Casimir forces [98] between two or more dielectric bodies. Or,
as θ can be rather general, these are the torques between birefrin-
gent plates [99], or the capillary forces [94] that lift up water to
the leaves of trees (limiting the maximal height to which trees
can grow [100]).

First, let us give an intuitive heuristic explanation of the
nature of vacuum forces. Zero-point fluctuations of the electro-
magnetic field manifest themselves as omnipresent virtual
photons that equally populate all modes at all frequencies. For
a specific frequency, this leads to a (non-virtual, i.e., real) force
which is an equally weighted sum over all contributions from all
the modes. Mathematically, this is expressed by the trace

tr(Qθ )=

N∑
m=1

e†
mQθem . (60)

Here, em are the unit basis vectors describing the modes of the
electromagnetic field. The consequence of this trace term is that
a finite force is transmitted onto a target even when no light is
injected into the system at all.

To see on a more technical level that the trace of the GWS
matrix Qθ describes the vacuum forces, we derive the latter from
first principles along the same lines as the established literature
on the relationship between scattering theory and vacuum forces
[101,102]. Consider the scattering phase η, defined as the sum
of all eigenphases ηk of the unitary scattering matrix S with
eigenvalues eiηk :

η=

N∑
k=1

ηk =−i ln (det(S)) . (61)

The scattering phase, in turn, provides direct access to the den-
sity of statesρ(E ) according to Krein’s trace formula [103,104],

ρ(E )= ρ0(E )+
1

2π

∂η

∂E
, (62)

where ρ0(E ) is the density of states for free space which is inde-
pendent of θ . Since

∂η

∂θ
=−itr

(
S† ∂S
∂θ

)
= tr(Qθ ), (63)

for arbitrary θ (including E ), we have

ρ(E )= ρ0(E )+
1

2π
tr
(
QE

)
. (64)

Now, the vacuum force K vac
θ upon θ is the negative derivative of

the vacuum energy with respect to θ :

K vac
θ =−

∂

∂θ

∫
∞

0

E
2
ρ(E )dE =−

1

4π

∫
∞

0
E
∂2η

∂E∂θ
dE .

(65)
Integrating by parts and using Eq. (63) gives

K vac
θ =

1

4π

∫
∞

0
tr(Qθ )dE = 〈0|K̂ θ |0〉. (66)

This formula relates the classical GWS matrix Qθ to the vac-
uum force and agrees with our finding in Eq. (54). In deriving
it by partial integration, we assumed that tr(Qθ ) vanishes for
E→∞ (or is infinitely oscillatory such that it vanishes effec-
tively). This assumption is based on the physical fact that the
vacuum forces [95] originate from reflections between scatterers
and that those reflections vanish for E→∞ due to dispersion
[105].

The bare vacuum energy and its density is infinite, but
the part of the energy that can do physical work is finite.
Renormalization—the subtraction of the infinite, unphysical
contribution from the vacuum energy—is required. Physically
motivated renormalization methods have been suggested
right from the beginning of Casimir physics research in the
late 1940s. Casimir himself [98] extracted the part of the vac-
uum energy that can do physical work by taking the difference
between a finite and an infinite cavity. Taking the difference
between vacuum energies for finite and infinite distances is also
the basis for renormalization in modern numerical methods for
calculating the Casimir force between arbitrary dielectric bodies
[106]. But this renormalization method cannot determine the
Casimir force of the dielectric upon itself, in particular in inho-
mogeneous media [107–109], because one cannot take such
media apart to infinity for determining their intrinsic vacuum
stresses. Reference [107] shows that for inhomogeneous media,
the simple ansatz of discretizing such media into small homo-
geneous sections does not converge in the continuum limit.
The QWS operator may serve as a starting point to overcome
these problems and to provide an understanding of the physi-
cal phenomena that underlie mathematical renormalization
procedures [110].

6. QUANTUM METROLOGY

A. Quantum Fisher Information

In this section, we interpret θ as a parameter of the scattering
system, the value of which we want to estimate. In order to
arrive at an estimate of θ with as little uncertainty as possible,
quantum metrology addresses not only the question of how
to prepare a corresponding probe state, but also how to make
optimal measurements on the transformed probe state and how
to process the data collected in the measurements [111–115].
A well-known result in this context is that the measurement
uncertainty is always larger than the inverse of the quantum
Fisher information (QFI) Fθ , as is expressed by the quantum
Cramér–Rao bound,

V
[
θ̃ (X )

]
≥

1

MFθ
, (67)
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where θ̃ (X ) is an unbiased estimator for θ based on the mea-
surement outcome X (V denotes the statistical variance and M
is the number of repeated independent measurements). The
QFI is only determined by the θ -dependence of the quantum
state that interacted with the system, but it is independent of the
measurement scheme and independent of the estimator.

Minimizing the uncertainty therefore requires maximizing
the QFI with respect to the probe state, resulting in a mini-
mal right-hand side for the quantum Cramér–Rao bound in
Eq. (67). We neither treat the measurement (i.e., the choice
of X ) nor the estimation procedure (i.e., the choice of the esti-
mator θ̃ (X )). Given a specific probe state, it is always possible
to saturate the quantum Cramér–Rao bound by choosing an
appropriate measurement [112,115] and (in the asymptotic
limit of many measurements) a maximum likelihood estimator
[116]. If experimental or other restrictions inhibit the imple-
mentation of the theoretically optimal measurement, then one
has to resort to maximizing the classical Fisher information,
which depends on the probe state (like the QFI does), but addi-
tionally also on the measurement scheme. In this optimization
problem one can then impose appropriate restrictions regarding
the probe state and the measurement scheme or even fix the
measurement altogether, e.g., to a homodyne detection.

Because the QFI is convex with respect to the probe state, the
optimal state is pure, ρ̂0 = |ψ0〉〈ψ0| [39,117]. The scattering-
induced transformation of the probe state is governed by the
unitary operator Û(θ) defined in Eq. (37). In this case of a uni-
tarily transformed pure state, the QFI can be easily expressed as
the variance of the QWS operator with respect to the probe state
[118]:

Fθ = 4V|ψ0〉

[
Q̂θ

]
= 4

(
〈ψ0|Q̂2

θ |ψ0〉 − 〈ψ0|Q̂θ |ψ0〉
2
)

.

(68)
Moreover, combining Eqs. (67) and (68) for a single measure-

ment M = 1, one obtains a fundamental uncertainty principle
[112],

V[θ̃ (X )]V|ψ0〉

[
Q̂θ

]
≥

1

4
, (69)

which is more general than the standard uncertainty principle
because θ is not restricted to being a quantum operator—indeed
it can be any parameter of the system. The inequality Eq. (69)
tells us, in the language of scattering matrices, that on a fun-
damental level, gaining more information about a physical
parameter θ comes at the cost of causing greater perturbations
in θ .

B. Gaussian Probe States

Using these well-known results from quantum metrology
[112,118], we can now connect the QFI to the classical scatter-
ing matrix. For monochromatic classical light which is described
by coherent quantum states |α〉M, α ∈CN being the ampli-
tudes of the N input modes (see Subsection 2.B), we obtain (see
[17] and Appendix C.1)

Fθ = 4α†Q2
θα. (70)

Given a specific mean total photon number ν, which is equal
to ||α||2 and proportional to the energy of the light (apart from

Fig. 6. QFI Fθ as a function of the mean total photon number ν
for different choices for the probe state in unitary quantum metrology.
Here, we assume that the GWS matrix has a generic eigenvalue spec-
trum corresponding to a uniform distribution U(−1, 1). The optimal
coherent probe state (blue line) exhibits the scaling Fθ ∝ ν, indicating
the SQL. Both the optimal photon number state, which is a NOON
state (green line), and the optimal squeezed state (red line) are able to
reach the HL, as indicated by the scaling Fθ ∝ ν2, for large values of ν.

the zero point energy), the optimal metrological input state that
maximizes the QFI in Eq. (70) is given by the eigenvector of the
GWS matrix Qθ that corresponds to the eigenvalue λihav with
the highest absolute value. The maximized QFI itself is given by

Fθ = 4λ2
ihav
ν. (71)

Let us now consider another case of experimental relevance
[88–91]: monochromatic squeezed states. It is most convenient
to express the corresponding QFI in the Q representation; see
Eq. (C6) in Appendix C.1. The maximization of the QFI under
the constraint of a given mean total photon number ν is carried
out in Appendix C.2. The resulting optimal Gaussian probe
state is characterized as follows: all channels are populated by
the vacuum state and all resources (in terms of the mean photon
number or, equivalently, the energy of the light) are used to
squeeze the vacuum in the channel corresponding to the eigen-
value of the GWS matrix Qθ with the highest absolute value.
Since the coherent amplitude β vanishes in this case, there is no
preferred direction in the photonic quantum phase space, which
is why the squeezing angle is irrelevant here. The corresponding
QFI is given by

Fθ = 8λ2
ihav
ν (ν + 1) , (72)

which is (for ν > 0) always strictly greater than the QFI (76) of
the optimal coherent probe state with the same number of pho-
tons; see also Fig. 6.

Another important difference between the last two equa-
tions is the dissimilar scaling of the QFI Fθ with respect to the
mean total photon number ν. The physical reason behind this
observation is that photons in a coherent state are uncorrelated.
This necessarily limits the estimation precision to the so-called
standard quantum limit, indicated by the linear scaling Fθ ∝ ν
in Eq. (71); see also Fig. 6. In order to surpass this limit and
attain what is known as the Heisenberg limit, characterized
by the quadratic scaling Fθ ∝ ν2 for ν� 1 in Eq. (72), one
must resort to quantum correlated, i.e., entangled photons
[114,115,119–121]. Such quantum correlations are provided
by squeezing [122–126]; see also Fig. 6.

What the optimal coherent probe state and the optimal
Gaussian probe state have in common is that only the channel
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ihav is populated by photons. For the waveguide setup intro-
duced in Subsection 2.A, the spatial structure of such a channel
is shown in Fig. 4(a) for θ = x and Fig. 4(d) for θ = y .

C. Photon Number Probe States

As a last example, let us now search for optimized probe states,
which are characterized by a well-defined number of photons,
ν ∈N0. The space of such “photon number states” is spanned
by Fock states, which form an orthonormal basis. Each Fock
state is characterized by the number of photons νi ∈N0 in each
channel i , such that

∑N
i=1 νi = ν. Here, we work with the Fock

states associated with theQ representation. Throughout the rest
of this subsection, we stay in the Q representation and hence
suppress the corresponding label. We denote the Fock states
with the symbol |ν〉, where the νi are the components of the vec-
tor ν. The Fock states are created from the vacuum state |0〉 by
applying the appropriate combination of creation operators b̂†

i :

|ν〉 :=

N∏
i=1

1
√
νi !

(
b̂†

i

)νi
|0〉. (73)

We denote the set of all N-mode Fock states with a total number
of ν photons with

FN
ν :=

{
ν ∈NN

0 :

N∑
i=1

νi = ν

}
. (74)

A photon number state is a superposition of those states:

|ψ〉 =
∑
ν∈FN

ν

〈ν|ψ〉|ν〉 =:
∑
ν∈FN

ν

ψν |ν〉. (75)

Recalling the photon number operators ν̂i = b̂†
i b̂i and

ν̂ =
∑N

i=1 ν̂i , the most important mathematical properties of
the Fock states are (ei denotes the i th unit vector)

b̂i |ν〉 =
√
νi |ν − ei 〉, (76)

b̂†
i |ν〉 =

√
νi + 1|ν + ei 〉, (77)

ν̂i |ν〉 = νi |ν〉, (78)

ν̂|ν〉 =

N∑
i=1

νi |ν〉. (79)

Fock states are eigenstates of the photon number operators.
Since the QWS operator (60) commutes with all photon num-
ber operators ν̂i , its eigenstates are also Fock states (in the Q
representation). Focusing on the “operator-valued” part of the
QWS operator Q̂I

θ in Eq. (A12) from Appendix A, we obtain

Q̂I
θ |ν〉 =

N∑
i=1

λi ν̂i |ν〉 =

N∑
i=1

λiνi |ν〉 =: λν |ν〉. (80)

With this insight, we can immediately write [see Eqs. (75)
and (80)]

V|ψ〉
[

Q̂θ

]
=

∑
ν∈FN

ν

|ψν |
2λ2
ν −

∑
ν∈FN

ν

|ψν |
2λν

2

. (81)

This corresponds to the variance of the discrete distribution
of values λν with respective probabilities |ψν |2. Before we
proceed, we sort the eigenvalues λi in descending order such
that λimax = λ1 ≥ λ2 ≥ . . .≥ λN = λimin . To find the optimal
probe state which maximizes Eq. (81), we invoke Popoviciu’s
inequality on variances [127], which states that the variance
of such a probability distribution p(λν) is bound from above
according to

V|ψ〉
[

Q̂θ

]
≤
((λν)max − (λν)min)

2

4
= ν2 (λ1 − λN)

2

4
. (82)

In the last step we used the fact that (λν)max = νλ1 and likewise
for the minimum; see also Eq. (80).

The inequality Eq. (A1) is saturated, i.e., the variance Eq. (86)
and thus the QFI [see Eq. (68)] is maximized, for

|ψν |
2
opt =

{
1
2 ν ∈ {νe1, νeN}

0 else,
(83)

yielding the optimal probe state

|ψopt〉 =
1
√

2

(
eiϕ1 |νe1〉 + eiϕN |νeN〉

)
. (84)

The phase factors eiϕ1 and eiϕN are arbitrary. This is a so-called
NOON state [128,129], establishing a maximal degree of
entanglement between the two channels corresponding to the
largest and smallest eigenvalues of the GWS matrix. Such super-
positions of spatial modes have been created experimentally
to increase measurement sensitivities [26,130]. The QFI with
respect to the NOON state [Eq. (A3)] is

Fθ = (λ1 − λN)
2ν2. (85)

The quadratic scaling Fθ ∝ ν2 indicates that the Heisenberg
limit is reached using this optimal probe state; see also Fig. 6.
However, we find that, regarding the QFI, the optimal Gaussian
probe state with the same mean total photon number ν [see
Eq. (72)] surpasses the NOON state by a factor of at least 2:

F optimal Gauss
θ ≥ 2F optimal NOON

θ . (86)

For a concrete demonstration of NOON states, we consider
the waveguide setup introduced in Subsection 2.A. For a single
photon (ν = 1), the spatial structures of the probability densities
of two selected NOON states are illustrated in Fig. 7. The plots
make it clear that these NOON states build up intensity right
where the target changes when θ is varied (in the positive or
negative direction). To make this more specific, we see, e.g., that
for θ = x the NOON state builds up intensity to the left and the
right of the target [see Fig. 7(a)]. In contrast, eigenstates of the
corresponding GWS matrix Qx lead to a high intensity only on
one side of the target [see Figs. 4(a) and 4(b)].

7. SUMMARY

We discuss here a simple formalism to describe the interaction
between the spatial as well as the quantum degrees of freedom of
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(a) (b)

Fig. 7. Spatial probability densities of single-photon NOON states in the system described in Subsection 2.A for different choices of the parameter
θ . (a) Horizontal displacement: The parameter θ is taken as the horizontal position x of the target (red square). (b) Vertical displacement: Here, θ is
taken as the vertical position y of the target (red square).

light and a local parameter of a linear, but otherwise arbitrarily
complex scattering medium. This formalism explicitly connects
quantum micromanipulation, vacuum forces, and quantum
metrology with classical scattering matrices, which are experi-
mentally measurable in a non-invasive manner. We show how
to design protocols for optimal micromanipulation as well as for
optimal parameter estimation by shaping both the spatial and
the quantum degrees of freedom of light. An important result of
this analysis is that for micromanipulation, the spatial shapes of
the optimal classical fields are also the optimal quantum ones.
Engineering their quantum properties allows one, however,
to reduce the noise in these fields. The discussed framework
treats radiation pressure and the Casimir effect on the same
footing, which enables the use of light fields to compensate for
vacuum forces. In the context of quantum metrology, we show
that both NOON states and squeezed Gaussian states can reach
the Heisenberg limit in complex scattering media. The relevant
channels are given by eigenvectors of the classical GWS matrix.
This matrix is derived from the system’s classical scattering
matrix, which is especially convenient to describe systems with
many spatial modes such as complex scattering media. The
presented framework should also be extendable to systems with
loss or incomplete channel control. We hope that our work
will stimulate exchange between the different communities
addressed in this tutorial.

APPENDIX A: PROOF OF EQ. (47)

1. First Lemma

Let Y (θ)be a θ -dependent matrix or operator, then

e−Y (θ) ∂eY (θ)

∂θ
=

∫ 1

0
e−tY (θ)Y ′(θ)etY (θ)dt (A1)

=

∞∑
r=0

(−1)r

(r + 1)!

[
Y (θ), Y ′(θ)

]
r , (A2)

where [·, ·]r is the r -fold nested commutator. Equation (A1)
is derived in Ref. [131] (Appendix B) and Eq. (A2) is obtained
using the Hadamard lemma,

eA Be−A
=

∞∑
r=0

1

r !
[A, B]r . (A3)

2. Second Lemma

The second lemma we need for our proof is that for all
J,K ∈CN×N : [

Ĵ , K̂
]
= Ĉ , (A4)

where C := [J,K] is the matrix commutator and each matrix
M ∈ {J,K,C} gets mapped to the operator M̂ := [â †

]
>M[â ] ∈

{ Ĵ , K̂ , Ĉ}. In other words, the commutation relations of the
bosonic creation and annihilation operators correctly encode
the ordinary matrix commutation rules.

This lemma is proven using the fundamental bosonic com-
mutation relations. A corollary of this lemma is that the same
relation also holds for the nested commutators:[

Ĵ , K̂
]

r = Ĉr . (A5)

3. Proof

If S(θ) is a unitary scattering matrix, then

L(θ) :=−i ln(S(θ)) (A6)

is a Hermitian matrix. The GWS matrix is obtained as [see
Eqs. (43), (A1), and (A2)]

Qθ =

∫ 1

0
e−i tL(θ)L′(θ)ei tL(θ)dt (A7)

=

∞∑
r=0

(−i)r

(r + 1)!

[
L(θ), L′(θ)

]
r . (A8)

Note that the GWS matrix is not just the derivative of the loga-
rithm of the scattering matrix, i.e., in general Qθ 6= L′(θ).)

In order to calculate the QWS operator, we first rewrite the
corresponding transformation operator Û(θ) into normal
order:

Û(θ)= ei[â†
]
>

L(θ)[â ]e
i
2 tr(L(θ)). (A9)

Using the product rule of differentiation, we can split the
QWS operator Q̂θ =−iÛ †(θ)∂θÛ(θ) into the sum of two
expressions, namely,

Q̂I
θ :=−ie−i[â†

]
>

L(θ)[â ] ∂

∂θ
ei[â†

]
>

L(θ)[â ], (A10)
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Q̂II
θ :=−ie−

i
2 tr(L(θ)) ∂

∂θ
e

i
2 tr(L(θ)). (A11)

The first term Q̂I
θ has the form e−Y (θ)∂θ eY (θ) so we can use

the first lemma from above [Eq. (A2)]. Further employing the
second lemma [Eq. (A5)] and Eq. (A8), it is straightforward to
show that

Q̂I
θ = [â

†
]
>Qθ [â ]. (A12)

The second term Q̂I
θ can be calculated using Eq. (A7):

Q̂II
θ =

1

2
tr(Qθ ). (A13)

APPENDIX B: MICROMANIPULATION

1. Physical Interpretation of the QWS Operator

Here, we want to establish a physical interpretation of the QWS
operator Q̂θ as the quantum operator describing the generalized
force conjugate to θ . In general, a force is defined as the negative
gradient of the Hamiltonian with respect to the parameter θ .
So in order to arrive at the desired correspondence, we have to
express the “scattering operator” Û from Eq. (37) in terms of
the Hamiltonian Ĥ. This is a well-known result from formal
scattering theory, typically formulated in terms of a scattering
matrix [132], but it holds equally for the quantum operator Û
following Refs. [133,134]:

Û = 1̂− 2π i Ŵ†ĜŴ, (B1)

Ĝ = (E − Ĥeff)
−1, (B2)

Ĥeff = Ĥ − π i ŴŴ†, (B3)

where Ĝ is the Green’s operator in the interior of the scattering
region, Ŵ describes the coupling between the channel basis
in the asymptotic region and the local basis at the boundary
of the scattering region, E is the energy, and Ĥeff is the effec-
tive Hamiltonian. In order to comprehend the connection
to Ref. [134], we rewrite Û = (1̂− i K̂ )(1̂+ i K̂ )−1 with
K̂ = πŴ†(E − Ĥ)−1Ŵ . This representation is identical
to Eqs. (2.50) and (2.51) from [134] by virtue of identi-
fying Ŵ = QHP and Ĥ = QHQ, where H is the “full”
Hamiltonian and Q and P are the projection operators onto the
subspace of “bound” and “scattering” states, respectively.

Proceeding, we observe the following:

1̂= (E − Ĥeff)Ĝ (B4)

⇒ Ĝ†
= E Ĝ†Ĝ − Ĝ† ĤeffĜ (B5)

⇒ Ĝ = E Ĝ†Ĝ − Ĝ† Ĥ†
effĜ (B6)

⇒ Ĝ†
− Ĝ = Ĝ†

(
Ĥ†

eff − Ĥeff

)
Ĝ

= 2π i Ĝ†ŴŴ†Ĝ . (B7)

In the last step we used the Hermiticity of Ĥ.
We assume that the coupling operator Ŵ is independent of θ

and thus

∂θÛ = 2π i Ŵ†Ĝ(−∂θ Ĥ)ĜŴ . (B8)

Using Eqs. (B7) and (B8), it is straightforward to show
that [69]

Q̂θ = 2πŴ†Ĝ†(−∂θ Ĥ)ĜŴ . (B9)

This equation already allows for the desired interpretation: the
operator Ŵ maps the asymptotic region to the boundary of
the scattering system and the Green’s operator Ĝ describes the
propagation inside the system. So indeed, the QWS operator
Q̂θ can be interpreted as the “asymptotic counterpart” to the
local force −∂θ Ĥ. To illustrate this relation even further, it is
convenient to write

|ψscat〉 =
√
εĜŴ|ψin〉, (B10)

where |ψscat〉 is the internal part of the scattering state excited
through the input state |ψin〉 and ε is an auxiliary quantity with
the physical unit of energy with the purpose of canceling the
physical units of Ĝ (J−1) and Ŵ (J1/2).

Combining Eqs. (B9) and (B10) yields

〈ψscat|(−∂θ Ĥ)|ψscat〉 =
ε

2π
〈ψin|Q̂θ |ψin〉, (B11)

which generalizes the central Eq. (2) in [35]. Note that this rela-
tion is evaluated at a single energy E . So in order to get the total
force K̂ θ , we have to integrate over the whole energy spectrum.
The auxiliary ε is conveniently replaced by the infinitesimal
measure dE :

K̂ θ =
1

2π

∫
∞

0
Q̂θdE . (B12)

One might very well question why we replace ε by dE without
any further numerical factors. In Section 5 [see Eq. (66)], we
derived the vacuum contribution to K̂ θ with an independent
calculation, which fixes the prefactor to (2π)−1.

2. Minimal Variance

We want to exploit the degeneracy of the optimal input states
for micromanipulation encountered in Section 4. Among the
Gaussian input states with all ν photons in the channel imax,
we want to find the ones that minimize the standard deviation
(or likewise, the variance) of Q̂θ . In Appendix C.2 (which does
not build on this subsection), we perform some optimization
calculations with this quantity and the main ideas there are also
relevant here. We invite the reader to study Appendix C.2 before
continuing here, so that we do not have to repeat ourselves
unnecessarily.

The main differences to Appendix C.2 are that we now want
to minimize the variance, and that we are already restricted to a
single channel, which is why we drop the associated index imax in
the following.

For the squeezing angle ψ we can conclude, analogously to
the considerations after Eq. (C9), that the optimal value is given
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by ψ = 2 arg(β), which amounts to amplitude squeezing; see
also Fig. 3(b). The remaining task is to minimize the expression

|β|2e−2p
+ 2cosh2

(p)sinh2
(p) (B13)

under the constraint

|β|2 + sinh2
(p)= ν. (B14)

[The sign in the exponential differs from Eq. (C10) due to the
different value for ψ .] Inserting the constraint into the target
function yields

minp∈[0,arsinh(
√
ν)]
(
νe−2p

+ sinh2
(p)(1+ sinh(2p))

)
.

(B15)
This minimization problem has a unique non-trivial yet analyti-
cally expressible solution for all ν ≥ 0, found with the help of
Wolfram Mathematica:∣∣βopt(ν)

∣∣=√ν − sinh2
(popt(ν)), (B16)

popt(ν)=
1

2
ln

(
1

2

(√
g (ν)+

√
4(1+ 2ν)
√

g (ν)
− g (ν)

))
,

(B17)

g (ν) :=
4

h(ν)
+

h(ν)
3
, (B18)

h(ν) :=
(

54(1+ 2ν)2 +
√

2916(1+ 2ν)4 − 1728

)1/3

.

(B19)
The functions g (ν) and h(ν) are mere mathematical auxiliary
functions. A plot of |βopt(ν)| and popt(ν) is given in Fig. 5(a).

APPENDIX C: QUANTUM FISHER INFORMATION

1. QFI of a Gaussian Probe State

We use the Q representation introduced at the end of
Subsection 3.B. From Eqs. (55) and (68), we obtain

Fθ = 4
N∑

i=1

λ2
i

〈
b̂†

i b̂i

〉

+ 4
N∑

i, j=1

λiλ j

(〈
b̂†

i b̂†
j b̂i b̂ j

〉
−

〈
b̂†

i b̂i

〉 〈
b̂†

j b̂ j

〉)
, (C1)

where 〈·〉 denotes the expectation value with respect to the pure
Gaussian probe state |β,4〉Q.

We start by calculating the expectation values 〈b̂†
i b̂i 〉, which

are the mean photon numbers νi defined after Eq. (55). These
expectation values are the same as the squared norms of the
vectors b̂i |β,4〉

Q. Using the identities (2.15) and (2.17) from
[55] (note the different sign convention in the definition of
the squeezing operator), the polar decomposition 4= Pei9

of the squeezing matrix, Eq. (52), b̂i |0〉 = 0 and denoting
|ei 〉

Q
:= b̂†

i |0〉, we calculate

b̂i |β,4〉
Q
= βi D̂b(β)Ŝb(4)|0〉

−

N∑
j=1

(
sinh(P)ei9)

ij D̂b(β)Ŝb(4)|ei 〉
Q. (C2)

Since both the displacement operator D̂b(β) and the squeezing
operator Ŝb(4) are unitary, they transform the orthonormal
Fock basis (see Subsection 6.C) into another orthonormal basis.
This means that we can simply read off the coefficients in order
to calculate the squared norm of this vector:∥∥∥b̂i |β,4〉

Q
∥∥∥2
= |βi |

2
+

N∑
j=1

∣∣∣(sinh(P)ei9)
ij

∣∣∣2. (C3)

The second term can be simplified using the Hermiticity of P
and the unitarity of ei9 , leading to

Q
〈β,4|b̂†

i b̂i |β,4〉
Q
= |βi |

2
+ (sinh2

(P))ii. (C4)

Analogously, we get in theM representation:

M
〈α, Z|â †

m âm |α, Z〉M = |αm |
2
+ (sinh2

(R))m,m . (C5)

The analytical calculation of the second line of Eq. (C1) is
more extensive, but still feasible, involving only fundamental
algebra. We skip a detailed derivation and state the result:

Fθ = 4
N∑

i=1

λ2
i νi + 4

N∑
i, j=1

λiλ jµij, (C6)

where the νi are given by Eq. (C4) and

µij =

∣∣∣∣(cosh(P)ei9> sinh(P>)
)

ij

∣∣∣∣2

+

N∑
i ′=1

∣∣∣(sinh(P)ei9)
i i ′
(
e−i9 sinh(P)

)
i ′ j

∣∣∣2

− 2<

(
β∗i β

∗

j

(
cosh(P)ei9> sinh(P>)

)
ij

)
+ 2<

(
β∗i β j

(
sinh2

(P)
)

ij

)
. (C7)

As a special case, the QFI of the coherent state |β〉Q = |α〉M

is obtained by setting the squeezing matrix to zero. In this case,
νi = |βi |

2 and µij = 0 and therefore (using the representation
conversions given at the end of Subsection 3.B),

Fθ = 4β†32β = 4α†Q2
θα. (C8)

2. Optimal Monochromatic Gaussian Probe State

It is numerically verified and shown in [135] that the optimal
Gaussian state that maximizes the QFI in Eq. (C6) has a squeez-
ing matrix4= Pei9 which is diagonal in theQ representation.
This implies that P and 9 are diagonal as well. We denote the
respective diagonal elements with pi ≥ 0 and ψi ∈ [0, 2π).
All matrix functions (sinh, cosh, and exp) operate trivially on
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diagonal matrices. After some further calculations, we obtain
from Eq. (C6) the intermediate result,

Fθ = 4
N∑

i=1

λ2
i

(
|βi |

2 cosh(2pi )+ 2 cosh2
(pi )sinh2

(pi )

− 2 cosh(pi ) sinh(pi )<
(
β∗2i eiψi

))
.

(C9)

We now take a closer look at the last term of this expression.
The product of the hyperbolic functions is always non-negative,
so we have to minimize <(β∗2i eiψi ) in order to maximize the
overall QFI. Since ψi and the phase of βi appear only in this
term, we can do the optimization with respect to these variables
independently of the other terms. By varying ψi , the minimal
value is <(β∗2i eiψi )=−|βi |

2, which is achieved by the choice
ψi = 2 arg(βi )+ π . This corresponds to the squeezing angles
ψi/2= arg(βi )+ π/2, which simply means phase squeezing;
see also Fig. 3(b). Having performed the optimization over the
ψi , we are left with

Fθ = 4
N∑

i=1

λ2
i

(
|βi |

2e2pi + 2cosh2
(pi )sinh2

(pi )
)

. (C10)

In order to obtain a meaningful maximization problem w.r.t. the
QFI in the last equation, we have to impose certain restrictions
on the parameters |βi | and pi . The most intuitive constraint is
to assume that the mean total photon number is equal to a given
value ν [see Eq. (C4)]:

N∑
i=1

(
|βi |

2
+ sinh2

(pi )
)
= ν. (C11)

Independently of the precise value ν, we get the following opti-
mal state: all channels are populated by the vacuum state and the
whole energy (in form of photons) is used to squeeze the vacuum
in the channel ihav corresponding to the eigenvalue λihav of the
GWS matrix Qθ with the highest absolute value. The squeezing
angle ψihav = 2 arg(βihav)+ π is not defined in this case where
βihav = 0, yet its value is irrelevant [see Eq. (C9)], so we set it to
zero without loss of generality. The optimal state parameters are
therefore

βopt = 0, (C12)

4opt = arsinh
(√
ν
)

eihave
>

ihav
. (C13)

The expression eihave
>

ihav
represents an N × N zero matrix with a

single one-valued entry in row ihav and column ihav.
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Horodynski, Ivor Krešić, Matthias Kühmayer, Allard P. Mosk, Nicolas
Treps, and Matthias Zens for insightful and stimulating discussions. L. M. R.
and S. R. were supported by the FWF. U. L. was supported by the Israel Science
Foundation and the Murray B. Koffler Professorial Chair.

Disclosures. The authors declare no conflicts of interest.

Data availability. The data that support the plots within this paper are
available from the corresponding author upon reasonable request.

REFERENCES
1. A. P. Mosk, A. Lagendijk, G. Lerosey, et al., “Controlling waves in

space and time for imaging and focusing in complex media,” Nat.
Photonics 6, 283–292 (2012).

2. S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic
scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).

3. P.-A. Moreau, E. Toninelli, T. Gregory, et al., “Imaging with quantum
states of light,” Nat. Rev. Phys. 1, 367–380 (2019).

4. C. Fabre and N. Treps, “Modes and states in quantum optics,” Rev.
Mod. Phys. 92, 035005 (2020).

5. S. Yoon, M. Kim, M. Jang, et al., “Deep optical imaging within com-
plex scattering media,” Nat. Rev. Phys. 2, 141–158 (2020).

6. S. Popoff, G. Lerosey, M. Fink, et al., “Image transmission through
an opaque material,” Nat. Commun. 1, 81 (2010).

7. M. I. Kolobov, ed.,Quantum Imaging (Springer, 2007).
8. T. B. Pittman, Y. H. Shih, D. V. Strekalov, et al., “Optical imaging by

means of two-photon quantum entanglement,” Phys. Rev. A 52,
R3429–R3432 (1995).

9. M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging:
quantum and classical,” Philos. Trans. R. Soc. A. 375, 20160233
(2017).

10. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, et al., “Observation of a
single-beam gradient force optical trap for dielectric particles,” Opt.
Lett. 11, 288–290 (1986).

11. D. B. Phillips, M. J. Padgett, S. Hanna, et al., “Shape-induced force
fields in optical trapping,” Nat. Photonics 8, 400–405 (2014).

12. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, et al., “Laser cooling of
a nanomechanical oscillator into its quantum ground state,” Nature
478, 89–92 (2011).
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