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Abstract: Measuring the lifetime of fluorescent emitters by time-correlated single photon
counting (TCSPC) is a routine procedure in many research areas spanning from nanophotonics
to biology. The precision of such measurement depends on the number of detected photons
but also on the various sources of noise arising from the measurement process. Using Fisher
information theory, we calculate the lower bound on the precision of lifetime estimations for
mono-exponential and bi-exponential distributions. We analyse the dependence of the lifetime
estimation precision on experimentally relevant parameters, including the contribution of a
non-uniform background noise and the instrument response function (IRF) of the setup. We also
provide an open-source code to determine the lower bound on the estimation precision for any
experimental conditions. Two practical examples illustrate how this tool can be used to reach
optimal precision in time-resolved fluorescence microscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Nowadays, the precise determination of the lifetime of fluorescent emitters has become essential
for a wide range of applications. Indeed, enhancing the spontaneous rate of single emitters is
a topical challenge in nanophotonics [1, 2], leading to the measurement of strongly reduced
fluorescence lifetimes [3–8]. In biology, the contrast induced by lifetime variations is used to map
different parameters on biological samples [9–11] such as the viscosity, the potential of hydrogen
(pH) or the interaction between two emitters due to Förster resonance energy transfer (FRET).
Whatever application one is interested in, the best precision that can be achieved depends on
both the experimental conditions and the efficiency of the estimators. While the performances of
lifetime estimators can numerically be studied using Monte Carlo experiments [12–16], finding
the right experimental conditions requires a reliable benchmark to compare the performances
of different experimental setups. Such a benchmark is set by Fisher information theory and the
Cramér-Rao inequality, which gives the lower bound on the variance of unbiased estimators [17].
In other words, the Cramér-Rao inequality allows one to calculate the best precision that can
be achieved in the estimation of one or several parameters, taking into account the various
constraints induced by an experiment. In the recent years, this gauge became a standard used to
assess the limit of localisation precision in the context of single-molecule microscopy [18–22].
Other recent applications of this formalism include the investigation of the dynamics of single
molecules on the millisecond time scale [23] and the comparison of different imaging modalities
in fluorescence diffuse optical tomography [24, 25]. Among the different techniques that can be
implemented for lifetime measurements [11,26,27], TCSPC is commonly used to exploit low
level light signals with picosecond resolution [28]. Using the Cramér-Rao inequality, a relation
between the estimation precision and the number of collected photons was obtained in 1992 for a
simplified TCSPC model [29]. Here, we perform an extensive Cramér-Rao analysis to unravel
the dependence of the lifetime estimation precision on experimentally relevant parameters, in the
general case of a bi-exponential distribution along with any non-uniform background signal and
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considering the finite IRF of the setup. In addition, we provide an open-source code (Code 1,
see [30]) which computes the Cramér-Rao bound for any set of experimental parameters. Within
this framework, we thus provide a versatile tool which can be used for different purposes such as
determining the shortest lifetime that can be probed with a TCSPC setup or achieving optimal
contrast for FLIM-based applications.

2. Results and discussion

2.1. Excited-state lifetime distribution

Let us consider that the measured decay histogram follows a bi-exponential distribution with
an additional contribution due to background noise. Usually this noise originates from dark
counts due to the detection process, unfiltered excitation laser or luminescence of the substrate.
Assuming that the noise follows a known probability density function (PDF) noted qb(t), the
total signal can be modeled by using a set of 5 unknown parameters noted θ, namely, the decay
rate of each component (Γ1 and Γ2), the average number of detections for each component (N1
and N2), and the average number of detections due to background noise (Nb). Furthermore, we
consider that the excitation laser has a finite pulse duration, and that the jitter of the detection
system induces a loss of precision over the photon detection time. These two effects can be
accounted for by measuring the IRF of the system, which is described by a PDF noted qir f (t).
Then, if the detected photon rate does not exceed the maximum counting speed of the detector,
the expected number of events fi detected in the i-th bin of the decay histogram (and associated
with delays in-between ti and ti+1) reads

fi = N1

+∞∑
l=0

ti+1+lT∫
ti+lT

[
qir f (t) ∗ Γ1e−Γ1t

]
d t + N2

+∞∑
l=0

ti+1+lT∫
ti+lT

[
qir f (t) ∗ Γ2e−Γ2t

]
d t

+Nb

ti+1∫
ti

qb(t) d t ,

(1)

where T is the repetition period of the excitation laser. In this equation, only the first term
of the sums (corresponding to l = 0) is significant if the fluorescence lifetimes associated
with both exponential decays are shorter than the repetition period. For a given integration
time, and assuming that the detections are independent, we can then model the distribution of
detected events (including fluorescence photons and background noise) for each point of the decay
histogram by a Poisson distribution of expectation fi . The PDF associated with the observation
of Xi events on a given point of the decay histogram is therefore expressed by

pi(Xi; θ) =
f Xi

i

Xi!
e− fi . (2)

2.2. Cramér-Rao lower bound

In estimation theory, a well-known result is that the variance of any estimator θ̂ must satisfy the
Cramér-Rao inequality [17], which reads

Var(θ̂ j) ≥
[
I−1
(θ)

]
j j
, (3)

where Var is the variance operator and I is the Fisher information matrix defined by

[I(θ)]jk = E
[(
∂ ln p(X; θ)

∂θ j

) (
∂ ln p(X; θ)

∂θk

)]
, (4)
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where E is the expectation operator. The Fisher information matrix can be interpreted as a
measure of the amount of information about the parameters θ contained in a given data set X: the
more information about the parameters, the lower the bound on the variance of their estimators.
In the case of TCSPC measurements, we can assume that the n data points of the decay histogram
are independent. Moreover, since pi(Xi; θ) is a Poisson distribution of expectation fi , the variance
of this distribution is also equal to fi . From Eq. (4), we obtain

[I(θ)]jk =
n∑
i=1

1
fi

(
∂ fi
∂θ j

) (
∂ fi
∂θk

)
. (5)

The magnitude of the off-diagonal elements determines the extent to which the Cramér-Rao
lower bound on a given parameter is affected by the estimation of the other parameters. While
these off-diagonal elements generally vanish in the context of single-molecule localisation [20,21],
the cross-terms of the information matrix must be considered here. Indeed, the precision of
lifetime estimations can be strongly influenced by a lack of information about other parameters.
This is notably the case for bi-exponential decay histograms characterized by two decay rates of
the same order of magnitude (Γ1 ∼ Γ2).
Dimensionless quantities for the parameters involved in the calculations can be obtained by

performing the change of variable u = Γ1t, and by normalizing parameters by N1 and Γ1 (this
choice was notably made in [29]). Hence, we define the normalized repetition period r = Γ1T ,
the number of data points per period k = n/r and the normalized expected number of counts
due to background noise β = Nb/(rN1). As an example, let us consider a common organic dye,
Alexa Fluor 488 (τ = 4.1 ns) from which 2, 000 emitted photons have been collected by the
detection system. Assuming a repetition rate of 80 MHz, a board resolution of 16 ps and 1, 000
detections due to background noise, the value taken by the dimensionless parameters r, k and
β are respectively of the order of r = 3, k = 256 and β = 0.16. Bi-exponential decays can be
parametrized using the ratio of the decay rates γ = Γ2/Γ1 and the ratio of the expected number
of detections η = N2/N1. Table 1 summarizes the parameters used in the model. With these
parameters, Eq. (3) reads

σΓ1

Γ1
≥

1
√

N1
× F

(
η, γ, r, k, q̃ir f , β, q̃b

)
, (6)

where σΓ1 is the standard error on the decay rate estimates and F can be calculated by numerical
inversion of the information matrix, the elements of which are reported in Section 1 of Appendix:
Numerical methods. It must be noted that the Cramér-Rao bounds are the same for the relative
standard error on the decay rate and lifetime estimators (see Section 2 of Appendix: Numerical
methods).

Equation (6) explicitly gives the fundamental limit on the precision of decay rate (and lifetime)
estimations. In these expressions, F is calculated by inverting the information matrix and
describes the influence of the different parameters involved in the model on the value of the
Cramér-Rao bound. A low value of F indicates an experimental setup with a high sensitivity:
the F-value is always greater than unity and equals unity when the shot noise limit is reached.
Optimisation of a TCSPC setup is therefore achieved when the F-value reaches unity, indicating
that the precision of lifetime estimation is limited by the number of detected fluorescence photons.
For these reasons, the F-value is used as a figure of merit to quantify the performance of a
lifetime imaging technique [31, 32]. In the following sections, we will perform a parametric
study of the F-value. To do so, we will consider as a reference situation the ideal case for which
k = 500, r = 100, β = 0 and q̃ir f is a Dirac delta function. With these parameters, the F-value is
approximately of unity. Each parameter will then be individually varied, in order to highlight the
influence of each parameter upon the F-value.
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Table 1. Parameters Involved in the TCSPC Data Model.

Parameters Dimensionless parameters

First fluorescence decay N1 and Γ1

Second fluorescence decay N2 and Γ2 η = N2/N1 and γ = Γ2/Γ1

Repetition period T r = Γ1T

Number of data points n k = n/r

Instrument response function qir f (t) q̃ir f (u) = qir f (u/Γ1)/Γ1

Background noise Nb and qb(t) β = Nb/(rN1) and q̃b(u) = qb(u/Γ1)/Γ1

2.3. Mono-exponential case

Let us consider a signal following a mono-exponential distribution (η = 0) with a uniform
background noise. The set of unknown parameters is θ = (N, Γ). Figure 1 shows the dependence
of the F-value upon the number of counts due to background noise (Fig. 1(a)), the number of
data points per lifetime (Fig. 1(b)), the number of fluorescence lifetimes per repetition period
(Fig. 1(c)) and the standard deviation of the IRF (Fig. 1(d)) which is assumed to follow a inverse
Gaussian distribution. All these parameters fully characterize the experimental conditions, and
must be optimized in order to perform shot-noise limited estimations.
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Fig. 1. Precision of lifetime estimations as a function of (a) the number of counts due to
background noise, (b) the number of data point, (c) the repetition period and (d) the standard
deviation of the IRF. Each parameter is individually varied with respect to the ideal case in
which k = 500, r = 100, β = 0 and q̃ir f is a Dirac delta function. Dashed lines represent
the asymptotic values.

An analytical expression of F was obtained by Köllner and Wolfrum [29], for the special
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case in which the IRF is modelled by a Dirac delta function and the number of counts due to
background noise is β = 0:

F(r, k) =
k
r

√
1 − e−r

[
er/k(1 − e−r )
(er/k − 1)2

−
k2

er − 1

]−1/2

. (7)

As expected, the results obtained from Eq. (7) and those obtained by numerically inverting the
information matrix are the same under these conditions, as shown in Fig. 1(b) and Fig. 1(c).

The results shown in Fig. 1 can be straightforwardly applied to identify the parameters limiting
the precision of an experimental setup. For instance, if N = 400 fluorescence photons are
detected from an emitter, it follows from Eq. (6) that a relative error on Γ of 6% can be reached for
F ≤ 1.2. Considering each of the four situations depicted in Fig. 1 individually, such precision
can be achieved for a number of counts due to the background noise β ≤ 10−2 (Fig. 1(a)), for a
number of data points per lifetime k ≥ 0.5 (Fig. 1(b)), for a number of fluorescence lifetimes
per repetition period r ≥ 4 (Fig. 1(c)), and for a standard deviation of the IRF Γσir f ≤ 0.7
(Fig. 1(d)). When these four conditions on the parameters are simultaneously verified, one is
ensured to obtain a lower bound on σΓ1/Γ1 smaller than 9.7%.

2.4. Bi-exponential case

Let us now consider a signal following a bi-exponential distribution. If N2 and Γ2 can be precisely
estimated from independent measurements, the set of unknown parameters is θ = (N1, Γ1). Such
situation can occur for instance if the second component originates from the luminescence of the
substrate, because N2 and Γ2 can be estimated by performing a reference measurement without
the emitter. In contrast, if the second component originates from the emitter itself, N2 and Γ2 are
generally estimated from the data, and the set of unknown parameters to be considered becomes
θ = (N1, Γ1, N2, Γ2).
In both cases, the precision of lifetime estimations depends on η = N2/N1 and γ = Γ2/Γ1.

Figure 2 shows the dependence of the F-value upon these parameters for both situations. As
we aim at estimating Γ1, the second decay should be interpreted as a noise source which can
only degrade the estimation precision. Hence, the estimation precision is best for N2 < N1.
Interestingly, when the parameters of the second component can be independently estimated
(Fig. 2(a)), the estimation precision is best when Γ2 > Γ1, i.e. the lifetime of the second
component is shorter than the lifetime to be estimated. Indeed, Γ1 can be correctly estimated
from the last points of the decay histogram, for which the contribution of the second component
has vanished (see Section 3 of Appendix: Numerical methods). This arguments also hold when
the parameters of the second component must be estimated from the data (Fig. 2(b)) but, in that
case, Γ1 and Γ2 must be significantly different in order to enable a correct estimation.
As an example, we can investigate the number of fluorescence photons required to obtain

a relative error of 6% if the number of photons detected from each component is the same
(N2/N1 = 1) and for the two situations represented in Fig. 2(c). To begin with, we consider
that the parameters of the second component are independently estimated. While N1 = 381
photons are required if Γ2 = 2 Γ1, N1 = 852 photons are needed if Γ2 = 0.5 Γ1. This example
illustrates that the situation Γ2 > Γ1 is favorable in order to precisely estimate the decay rate Γ1.
As expected, the number of photons required to properly estimate Γ1 drastically increases when
the parameters of the second component must be estimated from the data. Indeed, N1 = 5, 237
photons are required if Γ2 = 2 Γ1 and N1 = 11, 450 photons are required if Γ2 = 0.5 Γ1.

2.5. Numerical tests

In this section, we demonstrate the versatility of the approach by analyzing two examples, one
for the estimation of lifetimes on the order of several picoseconds, the other for the estimation

                                                                                        Vol. 27, No. 15 | 22 Jul 2019 | OPTICS EXPRESS 21243 



10
-1

10
0

10
1

2
/

1

10
-1

10
0

10
1

N
2
/N

1

(a)

1

2

3

4

F
-v

a
lu

e

10
-1

10
0

10
1

2
/

1

10
-1

10
0

10
1

N
2
/N

1

(b)

1

2

3

4

F
-v

a
lu

e

0

1

2

P
D

F

2
 = 2 

1

(c)

0 1 2 3

1
 t

0

1

P
D

F

2
 = 0.5 

1

Fig. 2. Precision of lifetime estimations as a function of η = N2/N1 and γ = Γ2/Γ1 for a
bi-exponential distribution when (a) the parameters N2 and Γ2 are known and when (b) these
parameters must be estimated from the data. (c) Probability density function associated with
the first component (solid lines) and with the second component (dashed lines) for Γ2 = 2 Γ1
and Γ2 = 0.5 Γ1.

of lifetimes on the order of the nanosecond. In both cases, we consider an exponential decay
with known background noise, so that the parameters to be estimated are θ = (N, Γ). Each
example takes into account an IRF that was experimentally measured on a TCSPC setup. In these
two examples, we compare the Cramér-Rao bound on lifetime estimators to numerical results
obtained from Monte Carlo experiments. To this end, we numerically generate a set of 10,000
decay histograms for each experimental condition that will be investigated. This is performed by
using Eq. (1) to calculate the cumulative distribution function, from which decay histograms
can be randomly generated based on the inversion principle [33]. The lifetime τ = 1/Γ is then
estimated from each histogram by using a maximum-likelihood (ML) method. The estimation
bias is not significant for these numerical experiments (see Section 4 of Appendix: Numerical
methods). Moreover, the variance of ML estimators asymptotically approaches the Cramér-Rao
bound for large sample statistics, which allows the root-mean square (RMS) deviation of the
estimated lifetimes to be close to the fundamental limit for the experimental conditions that are
investigated. Note that the implementation of the second example is provided in the open source
Code File 1 [30].

Precision of picosecond lifetime estimations We consider an experimental setup designed to
estimate picosecond lifetimes, with a board resolution of 1 ps, with a repetition rate of 80 MHz
(T = 12.5 ns) and with an IRF characterised by a full with at half maximum (FWHM) of 38 ps.
The expected number of fluorescence photons is set to N = 1, 000. Moreover, the background
signal is assumed to be uniform, and the expected number of detections due to this background is
set to Nb = 500. We calculated the lower bound on the relative standard error στ/τ as a function
of the lifetime for these experimental conditions (Fig. 3(a), blue curve) as well as in the case
the IRF is a Dirac delta function (Fig. 3(a), green curve). For τ ∼ 1 ns, the lower bound on
στ/τ is slightly larger than the shot-noise limited bound due to the background noise. For an
ideal IRF, the lower bound on στ/τ slightly decreases when τ decreases since the number of
counts per lifetime due to background noise (noted β) decreases. In contrast, when the actual
IRF is considered, the lower bound on στ/τ strongly increases for lifetime shorter than half the
FWHM, which clearly highlights the relevance of taking into account the IRF for picosecond
lifetime estimations. Note that, in this regime, the ML estimator becomes less efficient and
slightly deviates from the Cramér-Rao bound.
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Fig. 3. Relative standard error on lifetime estimates for an experimental setup designed
for (a) picosecond and (b) nanosecond lifetime estimations. Solid lines represent the lower
bounds on στ/τ and data points are the RMS deviations of lifetime estimates obtained from
randomly generated data.

Optimal contrast in fluorescence lifetime microscopy We consider a typical TCSPC setup
designed for nanosecond lifetime estimation, with a board resolution of 16 ps, a repetition rate of
80 MHz and an IRF characterized by a FWHM of 240 ps. The expected number of fluorescence
photons is set to N = 1, 000. Moreover, we assume that a luminescence background signal is
also detected, with the same intensity as the fluorescence signal of interest and a lifetime of
1 ns. In order to choose fluorescent emitters that will lead to the most contrasted FLIM images,
we calculated the lower bound on στ/τ as a function of the fluorescence lifetime of the emitter
under these experimental conditions (Fig. 3(b), blue curve) as well as in the case of uniform
background noise (Fig. 3(b), green curve). While the precision of lifetime estimations is optimal
for τ ∼ 400 ps for the uniform background, the precision of lifetime estimations is optimal for
τ ∼ 2 ns for the exponential background. Indeed, the precision of lifetime estimations depends
on γ (see Fig. 2(a)) and the time dependence of the background noise allows estimations that are
more precise for γ > 1, that is, τ > 1 ns. In both situations, for lifetimes larger than 5 ns, the lower
bound on στ/τ strongly increases as the number of fluorescence lifetimes per repetition period
(noted r) decreases. In this regime, using a laser with a lower repetition rate must be considered
in order to improve the precision of lifetime estimations. Moreover, for lifetimes smaller than
100 ps, the lower bound on στ/τ also strongly increases as the fluorescence lifetime becomes
comparable to the IRF. In this regime, the precision of the estimations could be improved by
using a detection system with a smaller jitter and an excitation laser with a shorter pulse width.

3. Conclusion

In summary, we calculated the lower bound on the standard error on lifetime estimates depending
on key experimental parameters. These results can be used as a benchmark for the evaluation of
the precision of lifetime estimations. Moreover, they reveal the influence of different parameters
upon the estimation precision, providing us with a powerful tool for the optimisation of a TCSPC
setup as illustrated by two examples. We notably showed that a significant enhancement of the
precision of lifetime estimations can be achieved by choosing the proper fluorescent emitter
depending on the expected background noise, the IRF of the setup and the repetition rate of
the excitation laser. Various dependent parameters such as the integration time, the power of
the excitation laser or the measured spectral range can easily be studied by using the proposed
formalism, which can also be extended to the study of time-gated photon counting techniques.
We expect these results to be of great interest for current experimental challenges such as the
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reduction of the acquisition time in FLIM-based techniques, the characterization of photonic
antennas with high Purcell factors as well as fluorescence lifetime measurements at the single
molecule level.

4. Appendix: Numerical methods

In this section, we give explicit expressions of the Fisher informationmatrix and of the Cramér-Rao
bound, and we provide additional numerical results.

4.1. Calculation of the information matrix

4.1.1. General expression

Using the dimensionless parameters defined in the manuscript, the expectation of each data item
reads

fi = N1
©­­«
+∞∑
l=0

ui+1+lr∫
ui+lr

[
q̃ir f (u) ∗ e−u

]
d u + η

+∞∑
l=0

ui+1+lr∫
ui+lr

[
q̃ir f (u) ∗ γe−γu

]
d u

+βr

ui+1∫
ui

q̃b(u) d uª®¬ .

(8)

In order to calculate the information matrix, let us define JI, JII, KI, KII and JB as follows:

JI
i =

+∞∑
l=0

ui+1+lr∫
ui+lr

[
q̃ir f (u) ∗ e−u

]
d u ,

K I
i =

+∞∑
l=0

ui+1+lr∫
ui+lr

[
q̃ir f (u) ∗ (1 − u)e−u

]
d u ,

JII
i =

+∞∑
l=0

ui+1+lr∫
ui+lr

[
q̃ir f (u) ∗ γe−γu

]
d u , (9)

K II
i =

+∞∑
l=0

ui+1+lr∫
ui+lr

[
q̃ir f (u) ∗ γ(1 − γu)e−γu

]
d u ,

JB
i = r

ui+1∫
ui

q̃b(u) d u .

With these notations, Eq. (8) reads fi = N1
(
JI
i + ηJII

i + βJB
i

)
. Differentiating this expression by

each parameters yields

∂ fi
∂N1

= JI
i ,

∂ fi
∂Γ1
=

N1
Γ1

K I
i ,

∂ fi
∂Nb

= JB
i , (10)
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∂ fi
∂N2

= JII
i ,

∂ fi
∂Γ2
=
ηN1
γΓ1

K II
i .

Let us recall the expression of the information matrix:

[I(θ)]jk =
n∑
i=1

1
fi

(
∂ fi
∂θ j

) (
∂ fi
∂θk

)
. (11)

where θ = (N1, Γ1, Nb, N2, Γ2) are the parameters to be estimated. The elements of the information
matrix are therefore expressed by

IN1N1 =
1

N1

n∑
i=1

(JI
i )

2

JI
i + ηJII

i + βJB
i

,

IΓ1Γ1 =
N1

Γ2
1

n∑
i=1

(K I
i )

2

JI
i + ηJII

i + βJB
i

,

IN1Γ1 =
1
Γ1

n∑
i=1

JI
i K I

i

JI
i + ηJII

i + βJB
i

,

INbNb
=

1
N1

n∑
i=1

(JB
i )

2

JI
i + ηJII

i + βJB
i

,

IN1Nb
=

1
N1

n∑
i=1

JI
i JB

i

JI
i + ηJII

i + βJB
i

,

IΓ1Nb
=

1
Γ1

n∑
i=1

JB
i K I

i

JI
i + ηJII

i + βJB
i

,

IN2N2 =
1

N1

n∑
i=1

(JII
i )

2

JI
i + ηJII

i + βJB
i

,

IN1N2 =
1

N1

n∑
i=1

JI
i JII

i

JI
i + ηJII

i + βJB
i

, (12)

IΓ1N2 =
1
Γ1

n∑
i=1

JII
i K I

i

JI
i + ηJII

i + βJB
i

,

INbN2 =
1

N1

n∑
i=1

JB
i JII

i

JI
i + ηJII

i + βJB
i

,

IΓ2Γ2 =
η2N1

γ2Γ2
1

n∑
i=1

(K II
i )

2

JI
i + ηJII

i + βJB
i

,

IN1Γ2 =
η

γΓ1

n∑
i=1

JI
i K II

i

JI
i + ηJII

i + βJB
i

,

IΓ1Γ2 =
ηN1

γΓ2
1

n∑
i=1

K I
i K

II
i

JI
i + ηJII

i + βJB
i

,

INbΓ2 =
η

γΓ1

n∑
i=1

JB
i K II

i

JI
i + ηJII

i + βJB
i

,
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IN2Γ2 =
η

γΓ1

n∑
i=1

JII
i K II

i

JI
i + ηJII

i + βJB
i

.

Since Γ1 is our reference, the Cramér-Rao inequality will be most conveniently expressed in
terms of this parameter. By inverting the information matrix, we indeed obtain the following
expression:

σΓ1

Γ1
≥

1
√

N1
× F

(
η, γ, r, k, q̃ir f , β, q̃b

)
, (13)

where σΓ1 is the standard error on the decay rate estimates and F can be calculated by numerical
inversion of the information matrix.

4.1.2. Limiting cases

Ideal IRF Whenever the IRF can be considered as a Dirac delta function, the coefficients
defined by Eq. (9) become

JI
i = [e

−ui − e−ui+1 ]

+∞∑
l=0

e−lr ,

K I
i = [ui+1e−ui+1 − uie−ui ]

+∞∑
l=0

e−lr + [e−ui+1 − e−ui ]
+∞∑
l=0

lre−lr ,

JII
i = [e

−γui − e−γui+1 ]

+∞∑
l=0

e−γlr ,

K II
i = [γui+1e−γui+1 − γuie−γui ]

+∞∑
l=0

e−γlr + [e−γui+1 − e−γui ]
+∞∑
l=0

γlre−γlr .

(14)

JB
i remains unchanged, as it does not depend on the IRF. These expressions can be further
simplified, by using the following properties of geometric series:

+∞∑
l=0

e−lr =
1

1 − e−r
,

+∞∑
l=0

lre−lr =
re−r

(1 − e−r )2
.

(15)

We obtain

JI
i =

e−ui − e−ui+1

1 − e−r
,

K I
i =

ui+1e−ui+1 − uie−ui

1 − e−r
+

re−r (e−ui+1 − e−ui )
(1 − e−r )2

,

JII
i =

e−γui − e−γui+1

1 − e−γr
,

K II
i =

γui+1e−γui+1 − γuie−γui

1 − e−γr
+
γre−γr (e−γui+1 − e−γui )

(1 − e−γr )2
.

(16)

Uniform background noise Whenever the background noise is uniform over the repetition
period, the coefficient JB

i simply becomes

JB = r/n . (17)
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4.2. Cramér-Rao bound on the lifetime estimator

From Eq. (13), it is straightforward to calculate the Cramér-Rao bound on the lifetime estimator.
To do so, we define the excited-state lifetime τ1 = 1/Γ1 and we perform a transformation of
parameter, as detailed in Appendix 3B of [17]. This reads

Var (τ̂1) ≥

[
∂(1/Γ1)

∂Γ1

]2 [
Γ1
√

N1
× F

(
η, γ, r, k, q̃ir f , β, q̃b

) ]2
, (18)

where τ̂1 is the lifetime estimator. This expression simplifies to

στ1

τ1
≥

1
√

N1
× F

(
η, γ, r, k, q̃ir f , β, q̃b

)
, (19)

where στ1 is the standard error on the lifetime estimates. This demonstrates that the Cramér-Rao
lower bounds are the same for the relative standard error on the decay rate and lifetime estimators.

4.3. Partial and cumulated information

In general, elements of the information matrix are calculated as a sum over the n points of the
decay histogram. From Eq. (11), it can therefore be expressed in a formal way as follows:

I =
n∑
i=1

Ri(η, γ, r, k, q̃ir f , β, q̃b) . (20)

We define the partial information matrix Ip as the information matrix calculated from the sum
over p points of the decay histogram, where p is the number of parameters to be estimated. This
reads

Ip =

j+(p−1)∑
i=j

Ri(η, γ, r, k, q̃ir f , β, q̃b) . (21)

We also define the cumulated information matrix Ic as the information matrix calculated from
the sum over the m first points of the decay histogram, with m ≤ n. This reads

Ic =

m∑
i=1

Ri(η, γ, r, k, q̃ir f , β, q̃b) . (22)

From these definitions, the partial information and the cumulated information can be used to
compare the information carried by different sets of points of the data histogram about the decay
rate Γ1 to be estimated. Figure 4(a) shows the F-value calculated from the partial information
matrix as a function of j/k, considering a bi-exponential decay histogram (η = 1) with a large
number of data point per lifetime (k = 500), a large number of lifetime per repetition period
(r = 100), no background noise (β = 0) and an ideal IRF. The first points of the decay histogram
carry more information for γ = 0.2 than for γ = 5. Indeed, in this latter case, the signal due to the
second decay is concentrated on the first points of the decay histogram, making the estimation of
Γ1 more difficult. However, this signal vanishes faster and, indeed, we can see that the information
contained in the last points of the histogram is larger for γ = 5 than for γ = 0.2. Figure 4(b)
shows the F-value calculated from the cumulated information matrix as a function of m/k. For
m/k ∼ 2.3, the F-value becomes smaller for γ = 5 than for γ = 0.2, resulting in a better precision
for γ = 5 than for γ = 0.2 whenever the whole histogram is considered.
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Fig. 4. Precision of lifetime estimations calculated for a bi-exponential distribution assuming
that the parameters of the second decay component are known. (a) F-value calculated
from the partial information matrix, as a function of j/k. (b) F-value calculated from the
cumulated information matrix, as a function of m/k.

4.4. Bias of maximum-likelihood estimations

The bias Bτ of an estimator τ̂ describes whether the estimator can, on average, recover the true
value of the parameter τ. It is defined by

Bτ = E(τ̂) − τ . (23)

Figure 5 shows the relative bias Bτ/τ of the maximum-likelihood estimator used in the two
examples analyzed in the manuscript. In both cases, we can see that the relative bias increases
when τ decreases, which can be attributed to the influence of the IRF on the estimation process.
However, the relative bias is always one order of magnitude smaller than the relative standard
error (Fig. 3 of the manuscript). This justifies the relevance of using the Cramér-Rao bound
as a benchmark for the estimation precision (the Cramér-Rao bound applies only to unbiased
estimators).
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Fig. 5. Relative bias on lifetime estimates for an experimental setup designed for (a)
picosecond and (b) nanosecond lifetime estimations.
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