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Coherent diffractive imaging (CDI) is widely used to charac-
terize structured samples from measurements of diffracting
intensity patterns. We introduce a numerical framework to
quantify the precision that can be achieved when estimating
any given set of parameters characterizing the sample from
measured data. The approach, based on the calculation
of the Fisher information matrix, provides a clear bench-
mark to assess the performance of CDI methods. Moreover,
by optimizing the Fisher information metric using deep
learning optimization libraries, we demonstrate how to
identify the optimal illumination scheme that minimizes the
estimation error under specified experimental constraints.
This work paves the way for an efficient characterization
of structured samples at the sub-wavelength scale. © 2021
Optical Society of America under the terms of the OSA Open Access
Publishing Agreement
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The fast and precise characterization of nanoscale devices
is an essential aspect of advanced semiconductor manu-
facturing processes. It is thus crucial to ensure that optical
measurements can reveal every important feature of nanos-
tructured samples with an excellent precision. To achieve this
goal, a common approach is to numerically reconstruct the
permittivity distribution of the sample, either from interfero-
metric measurements [1] or from intensity measurements via
ptychography-like techniques [2]. In many cases of interest,
some a priori knowledge of the sample is also available to the
observer. For instance, in nanofabrication, the geometry of
manufactured samples is usually known with high precision,
and only a few critical parameters need to be monitored after
the lithography process [3]. Typically, it is assumed that the
sample can be described using a sparse representation in a
known basis. Such an approach, referred to as sparsity-based
coherent diffractive imaging (CDI), leads to a significant reduc-
tion in the number of parameters that need to be estimated
from the measured diffraction patterns, therefore mitigating
ill-posedness of the inverse problem that needs to be solved
[4,5]. Furthermore, the resolution of reconstructed images is

not limited by Rayleigh’s criterion, so that parameters can be
estimated with sub-wavelength precision [6–9].

As for any imaging technique, an important aspect of
sparsity-based CDI is to identify an optimized approach to
illuminate the sample [10,11]. Formally, the estimation preci-
sion achievable with different incident fields can be compared
using the Cramér–Rao lower bound (CRLB), which is a central
concept in estimation theory. This concept is currently widely
used in single-molecule localization microscopy [12,13] and
in quantum metrology [14,15]. It has also been proposed as a
new resolution measure for imaging systems [16,17], and the
possibility to identify optimal incident fields that minimize
the CRLB was recently investigated, for instance to localize a
single particle in a complex environment [18] or to characterize
a phase object hidden behind a scattering medium [19].

In this Letter, we describe a method to find illumination
schemes that optimize the precision of parameter estimation
in sparsity-based CDI. As an example, we present different
approaches to characterize a parameterized sample composed
of three vertical lines (Fig. 1), either by determining optimal
positions for the incident field or by identifying the optimal
design for a zone plate that shapes the incident field. In addition,
we analyze the resulting CRLB in terms of contributions of
the quantum fluctuations of coherent states, the absence of
phase information in the measurements, and cross talk between

Fig. 1. Representation of a CDI setup used for the characterization
of a parameterized sample composed of three vertical lines. A coher-
ent light source illuminates the sample, and diffraction patterns are
measured by a camera located in the detection plane.
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parameters. These results offer new insights to improve the
performance of methods based on CDI when the dose per
acquisition may be limited, notably for the characterization of
delicate samples or when high throughput is required.

In CDI, one seeks to characterize a sample by estimating a
set of M parameters θ = (θ1, . . . , θM) from measurements of
one or several diffraction patterns that constitute the data X .
Noise fluctuations in the data impose a fundamental limit to
the achievable precision on the determination of θ . Indeed,
the covariance matrix 6 of any unbiased estimator of θ must
satisfy the Cramér–Rao inequality, which states that the matrix
(6 −J −1) is always nonnegative definite [20]. In this expres-
sion, the matrix J is known as the Fisher information matrix,
defined by J = 〈[∇θ ln p(X ; θ)][∇θ ln p(X ; θ)]T〉, where
p(X ; θ) is a joint probability density function, ∇θ is a partial
derivative operator defined by ∇θ = (∂/∂θ1, . . . , ∂/∂θM)

T ,
and 〈· · · 〉 denotes the expectation operator acting over noise
fluctuations. While the probability density function p(X ; θ)
can describe any type of noise, we assume here that the values
measured by the Np pixels of the camera are statistically inde-
pendent and follow a Poisson distribution, which corresponds
to measurements limited only by shot noise. Considering a set of
Nm diffraction patterns measured using different incident fields,
the Fisher information matrix is then expressed by

[J ]ij =
∑
k,l

1

Ik,l

(
∂Ik,l

∂θi

)(
∂Ik,l

∂θ j

)
, (1)

where Ik,l denotes the expected value of the intensity for the kth
pixel and for the l th diffraction pattern. The resulting CRLB on
the standard error on the estimated value of θi is given by

Ci =

√[
J −1]

ii . (2)

This bound is asymptotically reached by maximum-likelihood
(ML) estimators, which can be implemented by searching for
the global maximum of the log-likelihood function [20,21].

In conventional CDI, it is impractical to calculate the
CRLB due to the computational complexity of inverting the
large Fisher information matrices that arise when samples are
described by many parameters [22,23]. In contrast, the for-
malism is suitable to quantify the precision achievable with
sparsity-based CDI, when samples can be described in sparse
representations involving a reduced number of unknown
parameters. In such cases, it is then possible to define an
objective function that can be optimized to identify optimal
illumination schemes tailored for the estimation of θ . For single-
parameter estimations, the relevant objective function is simply
given by the CRLB for the parameter [19]. For multi-parameter
estimations, however, different relevant objective functions
can be defined. As a possible objective function, one could
choose the trace of J −1, which provides a measure of the aver-
age CRLB but does not guarantee that a controlled threshold
value bounds the CRLB for every parameter (see Supplement 1,
Section 1). For this reason, we use the spectral radius of J −1

as an objective function, which is defined as being the largest
eigenvalue ofJ −1. The CRLB on the standard error on the esti-
mated value of the first principal component is then expressed as
follows:

Cρ =
√
ρ
(
J −1) , (3)

where ρ(J −1) denotes the spectral radius of J −1. The
inequality Ci ≤ Cρ holds for any parameter θi . Minimizing
this objective function essentially leads to a reduction of the
CRLB for the parameters that are the most difficult to estimate,
a feature that is highly desirable for practical applications when
the metrological specifications involve a single tolerance value
that applies to all parameters.

To demonstrate the benefits of this approach in sparsity-
based CDI, we consider a sample composed of three vertical
lines (Fig. 1). These lines are separated from each other by a
distance of 10 µm, each line being characterized by a width of
10 µm and a length of 100 µm. A sparse representation of the
sample is obtained by describing these lines with 12 parameters
θ = (x1, . . . , x6, y1, . . . , y6), corresponding to the coordinates
of the edges of the lines. We assume that the sample is illumi-
nated with a coherent field at a wavelength λ= 561 nm. We
choose a total number of photons incident on the sample of
n = 3× 106; one can deduce the CRLB for other values of n by
remarking that the CRLB for shot noise limited measurements
scales with 1/

√
n. Diffraction patterns are then calculated using

a scalar diffraction approach by propagating the resulting field
using the angular spectrum representation. This method allows
us to calculate the expected value of the intensity Ik,l that would
be measured by a camera located at a distance z= 10 mm from
the sample and, thus, to calculate the associated 12× 12 Fisher
information matrix using a finite-difference approximation of
Eq. (1) (see Supplement 1, Section 2).

Tailoring the spatial distribution of the probe field provides
us with degrees of freedom that can be tuned to minimize Cρ .
In a constrained configuration, the shape of the distribution
is fixed (e.g., a Gaussian beam), and it is desired to identify
optimal values for the position of the probe field and its spatial
extent. To solve this optimization problem, we employ the
Adam optimizer, which is commonly used to train deep neural
networks [24,25] and which is implemented in the open-source
platform TensorFlow. We first consider the acquisition of four
independent diffraction patterns, each of them obtained by
illuminating the sample using a Gaussian beam with n/4 pho-
tons. The Adam optimizer is then used to identify the probe
positions and the full width at half-maximum (FWHM) that
minimize the CRLB for the first principal component Cρ . Note
that such optimization procedure is especially effective when the
a priori knowledge available on θ is of the order of the FWHM
of the probe field (see Supplement 1, Section 3). After the opti-
mization process, the value of Cρ is 44 nm [Fig. 2(a)], which is
well below the wavelength of the incident light thanks to the
sparse representation of the object. Optimal probe positions
are identified at critical areas of the sample, with an optimized
FWHM of 15 µm [Figs. 2(b) and 2(c) and Figs. 3(a)–3(h)].
This optimal illumination scheme can be interpreted as a trade-
off between the necessity to illuminate all important areas of
the object and the requirement to minimize the number of
photons wasted by missing the object or the camera. For com-
parison, we performed the same analysis for a conventional
ptychographic scheme. To ensure that the probes significantly
overlap over the field of view [26], we chose a FWHM of 100
µm and four probe positions distributed in a square grid of
side length 50 µm centered on the object. The value of Cρ
obtained with this conventional scheme is 127 nm, hence
showing that Cρ is reduced by a factor of 3 with the optimized
scheme.
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Fig. 2. Evolution of (a) the objective function Cρ during the opti-
mization process, as well as (b) the FWHM of the Gaussian probe field
and (c) the probe positions represented in the sample plane. The pur-
ple circles shown in (c) are centered at the optimized positions, with a
diameter equal to the optimized FWHM. The color of the curves rep-
resents the value of Cρ , ranging from 3.4µm (red) to 44 nm (purple).

We can also use Eq. (2) to calculate the CRLB for each param-
eter after the minimization of Cρ [Fig. 3(i)]. Interestingly, the
formalism allows us to analyze the contribution of different
error sources. Indeed, information is partly lost both because
of the influence of parameter cross talk and because the phase
of the field ϕk,l is not captured by the measurements. When
θi is to be estimated, other parameters can be considered as
nuisance parameters that can increase the CRLB via cross talk
[20]. Estimations of θi are the same regardless of whether other
parameters are known or unknown only if [J ]ij = 0 for i 6= j .
We can thus assess the influence of parameter cross talk by cal-
culating the lower bound on the standard error on the estimated
value of θi as if the Fisher information matrix was diagonal. This
bound is given byC ′i = 1/

√
J ′i , where

J ′i =
∑
k,l

1

Ik,l

(
∂Ik,l

∂θi

)2

. (4)

In addition, the absence of phase measurements also leads to an
increase of the CRLB. This can be assessed by calculating the
lower bound on the standard error on the estimated value of θi
assuming that both the intensity and the phase can be measured
by the observer—the precision of estimations is then only lim-
ited by the quantum fluctuations of coherent states. This bound
is expressed by C′′i = 1/

√
J ′′i , where J ′′i = 4

∑
|∂Ek,l/∂θi |

2 is
the Fisher information corresponding to single-parameter esti-
mation using an ideal homodyne detection scheme [19]. Note
that J ′′i is also equal to the quantum Fisher information associ-
ated with the estimation of a single parameter from uncorrelated
coherent states [19,27]. Introducing Ek,l =

√
Ik,l exp(iϕk,l ),

we can decomposeJ ′′i as follows:

J ′′i =
∑
k,l

1

Ik,l

(
∂Ik,l

∂θi

)2

+ 4
∑
k,l

Ik,l

(
∂ϕk,l

∂θi

)2

. (5)

The two terms that appear in the second member of Eq. (5) can
be interpreted as the Fisher information enclosed in the intensity
and the phase of the detected field, respectively.

The different bounds that are introduced here satisfy the
chain of inequalities C ′′i ≤ C ′i ≤ Ci ≤ Cρ , as can be seen in
Fig. 3(i). The influence of parameter cross talk varies depending
on the considered parameter, but we observe that parameters

Fig. 3. (a)–(d) Spatial distributions of the excitation intensity in
the sample plane for the optimal probe positions, assuming that four
diffraction patterns are measured. The position of the sample is repre-
sented by white lines. Scale bars, 20µm. (e)–(h) Spatial distributions of
the intensity in the detection plane. Scale bars, 200 µm. (i) CRLB for
each parameter after the minimization of Cρ , along with the RMS error
obtained by performing ML estimations on 104 numerically generated
diffraction patterns.

defining the x position of the line edges are more affected than
those defining the y position of the line edges. Furthermore,
after the propagation of the field to the detection plane, the
Fisher information associated with intensity and phase measure-
ments [first and second terms of the second member of Eq. (5),
respectively] are approximately equal, which explains why the
CRLB is then degraded by a factor close to

√
2 by the absence of

phase information.
In order to show that the calculated CRLB can be approached

with ML estimators, we numerically generate a set of 104 noisy
diffraction patterns. For each pattern, we first randomly modify
the value of each parameter according to a normal distribution,
with a standard deviation of 0.5 µm. We then calculate the
expected value of the intensity in the detection plane and use
it to randomly generate noisy data with Poisson statistics. The
value of all parameters is then estimated by maximizing the
log-likelihood function with the Adam optimizer. The root
mean square (RMS) error σi of the estimated values of each
parameter is close to the fundamental limit Ci [Fig. 3(i)], which
demonstrates here the efficiency of the ML estimator.

It is known that a structured illumination can improve the
resolution of imaging techniques, which notably led to the
development of randomized zone plates for use in ptychog-
raphy [28,29]. Here, we can use our numerical framework to
deterministically identify the design of the zone plate that is
optimal for precisely characterizing the sample. To this end,
we now consider a continuous transmission mask located at a
distance of 10 mm upstream of the sample. The radius of the
zone plate is set to 180 µm, so that the largest spatial frequency
of the field in the sample plane is the same as for the Gaussian
beams represented in Figs. 3(a)–3(d). Starting from a uniform
initial guess, we run the Adam optimizer to find the design of
the zone plate that minimizes Cρ for a single-shot measurement
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Fig. 4. (a) Optimal design of the zone plate that minimizes Cρ ,
assuming that a single diffraction pattern is measured. (b) Spatial dis-
tribution of the excitation intensity in the sample plane, as generated
by the optimized zone plate. The position of the sample is represented
by white lines. (c) Resulting spatial distribution of the intensity in the
detection plane. (d) CRLB for each parameter after the minimiza-
tion of Cρ , along with the RMS error obtained by performing ML
estimations on 104 numerically generated diffraction patterns.

[Fig. 4(a)]. This zone plate generates an intensity in the sample
plane that is high at all critical areas of the sample [Fig. 4(b)],
producing a structured intensity pattern in the detection plane
[Fig. 4(c)]. As shown in Fig. 4(d), the value of Cρ resulting from
the optimization process is 34 nm, which is significantly lower
than the optimized value of 44 nm obtained in the case of the
Gaussian beams. Thus, for a given total number of photons
incident on the sample, a single-shot measurement using the
optimized zone plate allows for a better precision on the esti-
mation of θ as compared to what can be achieved with four
measurements performed using a Gaussian beam illuminating
the sample at different positions. This demonstrates the poten-
tial of optimized zone plates for the precise characterization
of structured samples at high throughput, as often needed for
industrial applications [3].

In summary, we calculated the CRLB to assess the precision
achievable with sparsity-based CDI, and we used the formal-
ism to identify optimal illumination schemes that allow all
parameters to be precisely estimated while limiting the number
of photons interacting with the sample. We envision that this
strategy could be applied in future work by representing objects
with different choices of basis functions, such as a wavelet basis
or a basis of Gabor functions [30]. Implementing a Bayesian
approach could also allow for more flexibility in the a priori
knowledge that can be described using the formalism [20].
Furthermore, advanced numerical frameworks could be used
to go beyond the first Born approximation and to characterize
strongly scattering samples in two or three dimensions [2,31].
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