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1. CHOICE OF THE OBJECTIVE FUNCTION

Finding optimal incident fields requires one to clearly define a criterion for optimality, which
needs to be attached to a scalar quantity for this criterion to constitute a suitable objective function.
In the single-parameter case, the Fisher information is already a scalar quantity and minimizing
the CRLB (calculated as the inverse of the Fisher information) constitutes a straightforward
objective function [1]. In contrast, for multiple parameter estimations, the Fisher information
is a matrix, and the scalar quantity that is to be constructed from this matrix depends on the
metrological specifications imposed on the precision that must be achieved in the estimation of
each parameter.

Whenever the variance of the estimates averaged over all parameter needs to be minimized,
a relevant objective function is constituted by the trace of the inverse of the Fisher information
matrix, noted Tr(J −1). This criterion is invariant under orthonormal transformations, which is
a desirable property since it ensures that the optimization procedure yields the same optimal
incident field for two equivalent parameterizations. However, this objective function does not
guarantee that a controlled threshold value bounds the CRLB for every parameter. Instead, a high
CRLB for one parameter can in principle be compensated by a low CRLB for other parameters,
since the objective function is constructed as a sum of the C2

i . This is not a desirable feature for
several practical applications, when a tolerance is specified and when all parameters need to be
estimated with a precision that is equal or better than the tolerance.

For this reason, in the manuscript, we opted for a different objective function constituted by
the spectral radius of the inverse of the Fisher information matrix, noted ρ(J −1). This criterion
is also invariant under orthonormal transformations (as opposed for instance to an objective
function that would be defined as the largest diagonal coefficient of J −1). Moreover, it directly
yields an upper bound that applies to the CRLB of all parameters. Thus, it allows one to easily
specify a single tolerance associated with the maximum error that can be made in estimating
every parameters.

Fig. S1. CRLB for each parameter after the minimization of Tr(J −1) along with the RMS error
obtained by performing ML estimations on 104 numerically-generated diffraction patterns, in
the case of a) the optimization of the positions of four Gaussian beams and b) the optimization
of a zone plate located upstream of the sample. These figures can be compared to Fig. 3i and
Fig. 4d of the manuscript, which show the same results after a minimization of ρ(J −1).



In order to compare the results obtained by minimizing ρ(J −1) and Tr(J −1), we calculated
the CRLB for each parameter after the minimization of Tr(J −1) in the case of an optimization of
the positions of four Gaussian beams (Fig. S1a) and in the case of an optimization of the zone
plate located upstream of the sample (Fig. S1b). It clearly appears that, in both cases, the resulting
CRLB for each parameter is very close to the CRLB obtained by minimizing ρ(J −1) (see Fig. 3i
and Fig. 4d of the manuscript). Nevertheless, the CRLB for the first principal component Cρ is
slightly higher when Tr(J −1) is minimized. Indeed, the value of Cρ is 47 nm (instead of 44 nm)
when the four Gaussian beams are optimized, and the value of Cρ is 36 nm (instead of 34 nm)
when the zone plate is optimized. Thus, assuming that the metrological specifications involve
a single tolerance value that applies to all parameters, there is here a slight disadvantage of
minimizing Tr(J −1) instead of ρ(J −1).

2. NUMERICAL METHODS

We implemented a numerical model based on scalar wave propagation at a wavelength of
λ = 561 nm. In the detection plane (z = zdet), the field Edet

l (x′, y′) associated with the l-th
measured diffraction pattern is represented by a 128× 128 complex-valued array, with a pixel
size of 6.45 µm. The field in the object plane (z = 0) is oversampled by a factor of 8 and thereby
represented by a 1024× 1024 complex-valued array. The distance between the object and the
camera is assumed to be zdet = 10 mm. The object under consideration O(x, y) is composed of
three vertical lines, described with 12 parameters θ = (x1, . . . , x6, y1, . . . , y6) that correspond to
the coordinates of the edges of the lines. The numerical approach that we employ to evaluate the
Fisher information matrix requires that the 1024× 1024 array representing the object function
is differentiable with respect to θ. For this reason we constructed each line by multiplying four
sigmoid functions ranging between 0 and 1. With this strategy, the components of θ are then
defined as being the coordinates for which the sigmoid functions take the value 1/2.

This object function O(x, y) is multiplied by the incident field Einc
l (x, y) evaluated in the object

plane. Within the projection approximation, this procedure yields a correct estimate of the
transmitted field Eobj

l (x, y) in the object plane. Introducing the wavenumber k0 = 2π/λ and
using the angular spectrum representation of plane waves [2], we can calculate the field in the
detection plane as follows:

Edet
l (x′, y′) =

1
4π2

∫∫
Ẽobj

l (α, β) exp (iγzdet) exp
[
i(αx′ + βy′)

]
dαdβ , (S1)

where we noted γ =
√

k2
0 − α2 − β2 and where Ẽobj

l (α, β) is the Fourier transform of Eobj
l (x, y)

expressed by

Ẽobj
l (α, β) =

∫∫
Einc

l (x, y)O(x, y) exp [−i(αx + βy)]dxdy . (S2)

The Fourier transform operations involved in Eqs. (S1) and (S2) can be numerically implemented
with a fast Fourier transform (FFT) algorithm. Nevertheless, in order to avoid ringing artifacts,
Ẽobj

l (α, β) is first multiplied by a circular aperture function before integration in Eq. (S1). The
radius of this aperture function is determined from the effective numerical aperture of the
detection apparatus, and we convolve this aperture function with a 2-dimensional Hann function
in order to avoid a hard truncation of the field in the frequency domain. Once the field Edet

l (x′, y′)
in the detection plane is calculated according to Eq. (S1), the intensity in this plane is then simply
expressed by Ik,l = |Edet

l (x′k, y′k)|
2. The Fisher information matrix is then numerically estimated

using J ' HTH, where

[H]ki = ∑
l

1√
Ik,l(θi) + εr

[
Ik,l(θi + ∆θ)− Ik,l(θi − ∆θ)

2∆θ

]
. (S3)

All results presented in this work are obtained using a step size ∆θ = 1 nm and a regularization
parameter εr = 0.01, which has the physical interpretation of being the expected value of an
additive noise with Poisson statistics. Results are then found to be insensitive to ∆θ and ε over
several orders of magnitude, attesting that these values yield here an accurate estimate of the
Fisher information matrix.

The optimization was performed using a NVIDIA GeForce RTX 2070, which is a commercial
graphics processing unit (GPU). The optimization procedure relies on the Adam optimizer [3],
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called from TensorFlow libraries. This optimizer takes one main hyperparameter (the learning
rate) which must be determined heuristically. We found that learning rates between 0.3 and 0.4 are
appropriate to efficiently minimize the objective function, defined as the logarithm of the largest
eigenvalue of the inverse of the Fisher information matrix. We used the default values provided
by TensorFlow for other the hyperparameters of the Adam optimizer (β1 = 0.9, β2 = 0.999 and
ε = 10−7).

At first, we have found the optimized fields that minimize Cρ by tuning the positions of
four Gaussian beams and their spatial extent. The full width at half maximum (FWHM) was
initialized at 28 µm, and the coordinates of the probes were initialized at ±0.4 µm (see Fig. 2 of
the manuscript). Using the Adam optimizer, we performed 400 iterations with a learning rate of
0.4 to simultaneously optimize the probe positions and the FWHM of the probes. On our GPU,
this was achieved in a time of 149 s.

Then, we have found the optimized zone plate that minimize Cρ by tuning the amplitudes of
the 1024× 1024 array representing a zone plate located upstream of the sample. We considered a
zone plate with a radius of 180 µm, and we supposed that the distance between the zone plate
and the sample is 10 mm. The amplitudes defining the design of the zone plate were initialized
with random values taken from a uniform distribution. Using the Adam optimizer, we performed
300 iterations with a learning rate of 0.3 to optimize these amplitudes. On our GPU, this was
achieved in a time of 32 s. Note that this time is significantly lower than the time needed to find
the optimized probe positions. This difference arises from the fact that four Fisher information
matrices need to be evaluated per iteration to find optimal probe positions (one for each probe
position), whereas only one Fisher information matrix needs to be evaluated per iteration to
identify the optimized zone plate.

3. INFLUENCE OF AN INACCURATE PRIOR KNOWLEDGE

In general, the Fisher information matrix depends on the value taken by all parameters θ that
describe the object. Consequently, optimal illumination schemes depend on the values of θ that
were assumed during the optimization process. These values must be inferred from an a priori
knowledge of the object, which can be obtained for instance through design considerations or
using a low-intensity plane-wave illumination. In order to test what kind of a priori knowledge
of the object is required for the optimization process to be effective, we study here the precision
that can be achieved on the estimation of the parameter y2 (top edge of the left line) for different
illumination schemes. In the following, the origin of the coordinate system in the object plane
(x = 0, y = 0) is defined as being located in the center of the middle line.

We first consider the illumination scheme involving four Gaussian probes that minimizes Cρ

under the hypothesis that y2 = 50 µm, which is equivalent to a total line length of 100 µm and
corresponds to the situation considered in the manuscript (Fig. S2a, left). For this illumination
scheme, we vary the true value taken by y2 and we calculate the CRLB associated with the
estimation of this parameter (Fig. S2b, dark blue curve). We observe that the CRLB is minimized
when the true value of y2 matches the value assumed during the optimization process (y2 =
50 µm), and that the CRLB remains close to this minimum value within a range of the order of
the FWHM of the probe field (15 µm). For larger variations of y2, the critical area of the sample
that depends on this parameter is not properly illuminated by the incident field, resulting in a
higher CRLB. For comparison purposes, we also identify the illumination scheme involving four
Gaussian probes that minimizes Cρ under the hypothesis that y2 = 60 µm (Fig. S2a, right). For
this new illumination scheme, the CRLB is minimized for this value of y2 and remains close to
this minimum value within a relatively large range (Fig. S2b, light blue curve), which confirms
that the optimization procedure is here robust with respect to an imperfect a priori knowledge of
the sample.

For completeness, we perform the same analysis for the illumination scheme that involves a
zone plate minimizing Cρ, as described in the manuscript (see Fig. 4 of the manuscript). Similarly,
we observe that the CRLB is minimized when the true value of y2 matches the value assumed
during the optimization process, which is either y2 = 50 µm (Fig. S2c, dark red curve) or y2 =
60 µm (Fig. S2c, light red curve). Note that all optimized fields that we identified here are
optimally shaped for the simultaneous estimation of all 12 parameters describing the object. The
complex shape of the resulting illumination patterns in the object plane (see for instance the
intensity distribution shown in Fig. 4b of the manuscript) can then give rise to a non-convex
dependence of the CRLB upon the value taken by the parameters, as observed in Fig. S2c (light
red curve).
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Fig. S2. a) Object function under the hypothesis that y2 = 50 µm (left) and under the hy-
pothesis that y2 = 60 µm (right). b) CRLB for the parameter y2 as a function of the true value
taken by this parameter in the case of the optimization of the positions of four Gaussian beams.
c) CRLB for the parameter y2 in the case of the optimization of a zone plane located upstream
the sample. Opt. stands for Optimized (dark and light curves represent the CRLB obtained
after an optimization procedure performed under the hypothesis y2 = 50 µm and y2 = 60 µm,
respectively).
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