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Maximum-likelihood estimation in
ptychography in the presence of
Poisson-Gaussian noise statistics:
supplemental document 1

This document (Supplement 1) provides supplementary material to Maximum-likelihood estimation
in ptychography in the presence of Poisson-Gaussian noise statistics.

1. DERIVATION OF THE MAXIMUM-LIKELIHOOD ESTIMATION LOSS FUNCTIONS

In this supplementary chapter, we provide a derivation of the maximum-likelihood estimation
(MLE) loss functions used in a ptychography framework based on automatic differentiation.
MLE operates by selecting the set of parameters that maximize the likelihood function, thus
ensuring the best fit to the observed data when the noise follows a known statistical probability
distribution.

A. Poissonian noise statistics

Let us write the parameters of the ptychography model as a vector θ = [θ1, θ2, ..., θN̂ ] with N̂
denoting the total number of free parameters, presented in our case as complex-valued object
pixels. Within a physics-based forward model of ptychography (as detailed in [1]), we can
denote the expected intensity value at a certain pixel k as Ik(θ). In essence, Ik(θ) is the noise-free
predicted intensity given a specific parameter vector θ. Considering a discrete random variable
Yk, which characterizes the intensity measurement on a camera sensor, we assume a Poisson
distribution with an expectation value of Ik(θ). The probability mass function is thereby given by

p(Yk|θ) =
Ik(θ)

Yk

Yk!
exp (−Ik(θ)), Yk∈{1, 2, ..., N}. (S1)

Assuming that the N measurements are statistically independent, we can express the likelihood
function as

L(θ) =
N

∏
k

p(Yk|θ). (S2)

For the sake of computational convenience, we employ the log-likelihood function ℓ(θ), as the
natural logarithm preserves order while transforming the product into the following sum:

ℓ(θ) = lnL(θ) =
N

∑
k
(Yk ln Ik(θ)− Ik(θ)− ln Yk!) . (S3)

As suggested in Chapter 4.1 of [2], we can now find the second-order Taylor expansion in terms
of
√

Ik(θ) at the point
√

Ik(θ) =
√

Yk as

Yk ln Ik(θ)− Ik(θ) ≈ −Yk + Yk ln Yk − 2
(√

Yk −
√

Ik(θ)

)2
. (S4)

In practice, we aim to minimize the negative log-likelihood function. This transformation leads to
equivalent outcomes and enables us to implement the optimization problem using a reconstruc-
tion algorithm based on gradient descent minimization and automatic differentiation libraries
such as TensorFlow [3]. Hence, ignoring all constant additive terms and all multiplicative con-
stants, the MLE loss function for Poissonian noise statistics can be written as

LPoisson(θ) = −ℓ(θ) =
N

∑
k=1

(√
Yk −

√
Ik(θ)

)2
. (S5)



B. Gaussian noise statistics
Minimizing the mean squared error is a common approach to optimization problems and is math-
ematically closely related to using an MLE loss function with the assumption of Gaussian noise
statistics. Even though that is not the ideal assumption for a random variable Wk representing an
intensity measurement, it becomes practicable for a large number of detected photons or for cases
where Wk can be modeled as a sum of a large number of independent, identically distributed
variables, regardless of their underlying distributions (central limit theorem). Considering the
random variable Wk following a Gaussian distribution with the mean Ik(θ) and constant variance
σ2, we can express the probability density function as

p(Wk|θ) =
1√

2πσ2
exp

(
− (Wk − Ik(θ))

2

2σ2

)
. (S6)

In analogy to the previous section, we can then express the log-likelihood as

ℓ(θ) = lnL(θ) = ln
N

∏
k

p(Wk|θ) (S7)

ℓ(θ) = − N
2

ln(2πσ2)− 1
2σ2

N

∑
k=1

(Wk − Ik(θ))
2 . (S8)

Now, by neglecting the constant additive term and multiplicative constants, it becomes evident
that ℓ(θ) can be maximized by the least squares method. We can write the MLE loss function for
Gaussian noise statistics as

LGaussian(θ) =
N

∑
k=1

(Wk − Ik(θ))
2 . (S9)

C. Mixed Poisson-Gaussian noise statistics
Continuing from the previous sections, let us consider a random variable Xk as the intensity
measurement on a camera sensor with readout noise. We express Xk as the sum over two random
variables Xk = Yk + Zk, where Yk follows a Poisson distribution of expectation value Ik(θ) (see
equation S1) and Zk follows a centered Gaussian distribution of variance σ2

k . The probability
density function for Zk is given by

pg(Zk) =
1√

2πσ2
k

exp

(
−

Z2
k

2σ2
k

)
. (S10)

The random variable Yk can be approximated as a Gaussian distribution with mean Ik(θ) and
variance Ik(θ):

pp(Yk|θ) ≃
1√

2π Ik(θ)
exp

[
− (Yk − Ik(θ))

2

2Ik(θ)

]
. (S11)

We can express the probability density function of Xk as

p(Xk|θ) =
+∞∫
−∞

pp(τ|θ)pg(Xk − τ)dτ (S12)

p(Xk|θ) =
1√

2π(Ik(θ) + σ2
k )

exp

[
− (Xk − Ik(θ))

2

2(Ik(θ) + σ2
k )

]
. (S13)

In analogy to the case without readout noise above, we can now define the MLE loss function as
the negative log-likelihood function:

LMixed(θ) = −ℓ(θ) = − lnL(θ) = − ln
N

∏
k

p(Xk|θ) (S14)

LMixed(θ) =
N

∑
k=1

(
ln[Ik(θ) + σ2

k ] +
[Xk − Ik(θ)]

2

Ik(θ) + σ2
k

)
. (S15)

Here, we have neglected all constant additive terms and all multiplicative constants. To apply this
loss function in an optimization framework, we need to obtain σ2

k , the variance on the readout
noise for each pixel, from dark measurements.
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2. EXPERIMENTAL SETUP AND METHOD

The experimental setup for this ptychography study, also used for numerical simulations, is
depicted in Fig 2 of the main document. A coherent laser beam (Cobolt Jive 100™) with wave-
length λ = 561 nm is coupled into a single-mode fiber. A fiber collimator (60FC-L-0-M75-26,
Schäfter+Kirchoff) expands the beam to around 25 mm in diameter, which then illuminates a
500 µm pinhole. Using a 2-lens system with a magnification of M = 3, the pinhole is imaged
onto the object, resulting in the illumination field shown in Fig. S1, panel A. The two transfer
lenses have diameters of 22.9 mm, with focal lengths of 5 mm and 15 mm, respectively. The object
(µChart1951 Test Target, QingYing E&T LLC) is mounted on a motorized XY-stage with stepper
motor actuators (ZFS25B, Thorlabs). The scanning trajectory is shown in panel B of Fig. S1. It
comprises a total of 80 positions in a Fermat spiral pattern to optimize for overlap uniformness [4].
Using a traveling salesman algorithm, this trajectory is optimized to minimize total travel dis-
tance. The linear overlap between adjacent positions is approximately 60 % [5]. The diffraction
patterns are recorded 37.7 mm behind the object using a CMOS camera (acA2440-35um, Basler)
that features a binned pixel size of 6.9 µm and 1024x1024 total pixels.

Fig. S1. (A) Visualization of the complex-valued illumination field that is used in the experi-
ment. The image brightness represents the field amplitude, and the color represents the phase
(see circular colorbar). (B) The object’s scanning trajectory through the illumination beam in
the ptychographic experiment. (C) Horizontal and vertical intensity profiles, centered on the
illumination field.

To control the Signal-to-Noise Ratio (SNR) in the measurement, we vary the camera exposure
time from 30 µs to 300 ms over 22 steps, covering four orders of magnitude. We derive the spatially
varying readout noise variances σ2

k for each exposure time from 300 dark measurements, during
which the laser beam is blocked. To mitigate Johnson-Nyquist noise fluctuations, we operate
the camera sensor in a temperature controlled environment at 21 ◦C. These measurements also
provide us with an average background image for each exposure time setting that we subtract
from each diffraction pattern. To facilitate exact reproduction of the results presented in this
study, the raw background and noise statistics data are included alongside the reconstruction
framework in [6].

It is crucial to extract statistical information from potential negative intensity values resulting
from Gaussian readout noise. Therefore, we require a black level offset to ensure that no pixel
of the sensor ever reads the value of zero in dark measurements. With our Basler camera, we
monitor the smallest pixel value for increasing black level settings and observe that an offset of
4 first ensures that all pixel values are larger than zero. To minimize the reduction in dynamic
range, we choose this relatively small black level offset for the rest of this work.

For each scanning point, an independent measurement is obtained for each exposure time
setting, and an additional high-SNR measurement is taken by averaging 100 images with the
highest exposure time. This high-SNR measurement aids the calibration during the reconstruction
phase. In Fig. S2 presents an expanded version of Fig. 3 from the main manuscript. In the
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left column, the noise degradation of a single diffraction pattern is shown for all 22 exposure
time settings. The central and right columns (B and C) provide a visual comparison of the
reconstruction quality for each of these exposure time settings. Specifically, column B showcases
reconstructions obtained by using the Poissonian log-likelihood loss function LPoisson(θ) for
optimization, while column C displays reconstructions achieved by employing the mixed Poisson-
Gaussian log-likelihood loss function LMixed(θ). This comparative illustration provides a clear
understanding of the impact of the chosen loss function on the quality of reconstruction across a
large range of exposure times.

3. RECONSTRUCTION PROCEDURE

The reconstruction procedure begins with diffraction pattern preprocessing. An experimentally
acquired mean dark image is subtracted to correct for background noise and account for hot or
dead pixels. In cases where LPoisson is used for optimization, negative values are set to zero due
to the need for a real-valued loss function. Negative values cannot be incorporated into a noise
model that solely assumes Poissonian statistics.

Typical CCD and CMOS cameras involve an analog-to-digital converter that converts the
number of detected photons into analog-to-digital units (ADU). To rectify the assumption that
the intensity measurement is Poisson distributed, we rescale the data by the inverse of the overall
system gain. In the case of our CMOS camera, the inverse of the overall system gain is specified
by the manufacturer to be 2.7 e−

ADU .
Initially, a high-SNR reconstruction is conducted on the calibration dataset discussed in Sec-

tion 2. This helps rectify experimental uncertainties such as the object-camera distance and
scanning positions, as well as obtaining a high-quality reconstruction of the illumination field
(see Fig. S1, panel A). Following this, reconstructions from the lower-SNR diffraction patterns are
retrieved using the pre-calibrated illumination field. Each reconstruction is performed in sequence
on a commercial GPU (Nvidia RTX A6000) with the same hyperparameter and regularization
settings. Over 100 epochs, the learning rate for the ADAM optimizer [7] starts at lr = 0.1 and
exponentially decays at a rate λ = 0.03, following the schedule lrn+1 = lrne−λ.

Three regularization terms are added to the loss function, resulting in a final loss function in
the form of L = LPoisson/Mixed + ∑3

i=1 LReg,i.

1. An L1 norm on the amplitudes for the illumination field outside a circular support constraint
S with a radius of 1.5 mm. This regularization term accelerates the convergence of the
illumination calibration and is motivated by our experimental setup producing a circular
illumination with an approximate radius of 0.75 mm. This is expressed as

LReg,1 = α ∑
(x,y)∈S

|P(x, y)|, (S16)

where P(x, y) denotes the 2-dimensional illumination field (P for "probe"). The factor α
regulates the strength of the regularization, typically chosen as α ≈ 100 in our calibration
procedure.

2. A minor L1 norm on the amplitudes in the object given by

LReg,2 = β
N̂

∑
(x,y)

|O(x, y)|, (S17)

where O(x, y) denotes the 2-dimensional complex-valued object with a total number of
pixels N̂. This regularization drives towards finding a compact solution and mitigates high
object amplitudes in the object’s boundary areas that are insufficiently illuminated. We set
β = 0.0001.

3. A minor L1 norm on the summed magnitudes of the object in frequency space is expressed
as

LReg,3 = γ
N̂

∑
(x,y)

|Ô(u, v)|, (S18)

where Ô(u, v) denotes the Fourier transform Ô(u, v) = FT {O(x, y)}. We observe that
this regularization term can stabilize the optimization using LMixed, which sometimes
exhibits a poorer convergence behavior than optimizing LPoisson or helps prevent numerical
divergence phenomena for less-than-optimal learning rates. We set γ = 0.001.
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Note that choosing the regularization prefactors α, β, γ is arbitrary and depends on non-physical
parameters such as the sampling. Therefore, we adopt a heuristical approach to set them small
enough to ensure that the data fidelity term strongly dominates the reconstruction process. By
doing so, we preserve the valuable comparative basis between the two maximum likelihood
estimation (MLE) loss functions while subtly enhancing the reconstructions:

LPoisson/Mixed

∑3
i=1 LReg,i

≥ 100. (S19)
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Fig. S2. Column (A): Visualization of one diffraction pattern from the full data set at vary-
ing camera exposure time settings. The exposure times range from 30 ms (upper left) to 30 µs
(lower right). Columns (B and C): Amplitude images reconstructed from the ptychographic
data sets with the respective exposure times shown in column A in the same order. Column B
is reconstructed with a loss function assuming solely Poissonian noise statistics. Column C is
reconstructed with the mixed-statistics loss function assuming Poisson-Gaussian noise.
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